:-) GROMACS - gmx mdrun, 2019.6 (-: GROMACS is written by: Emile Apol Rossen Apostolov Paul Bauer Herman J.C. Berendsen Par Bjelkmar Christian Blau Viacheslav Bolnykh Kevin Boyd Aldert van Buuren Rudi van Drunen Anton Feenstra Alan Gray Gerrit Groenhof Anca Hamuraru Vincent Hindriksen M. Eric Irrgang Aleksei Iupinov Christoph Junghans Joe Jordan Dimitrios Karkoulis Peter Kasson Jiri Kraus Carsten Kutzner Per Larsson Justin A. Lemkul Viveca Lindahl Magnus Lundborg Erik Marklund Pascal Merz Pieter Meulenhoff Teemu Murtola Szilard Pall Sander Pronk Roland Schulz Michael Shirts Alexey Shvetsov Alfons Sijbers Peter Tieleman Jon Vincent Teemu Virolainen Christian Wennberg Maarten Wolf and the project leaders: Mark Abraham, Berk Hess, Erik Lindahl, and David van der Spoel Copyright (c) 1991-2000, University of Groningen, The Netherlands. Copyright (c) 2001-2018, The GROMACS development team at Uppsala University, Stockholm University and the Royal Institute of Technology, Sweden. check out http://www.gromacs.org for more information. GROMACS is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. GROMACS: gmx mdrun, version 2019.6 Executable: /usr/local/gromacs/bin/gmx Data prefix: /usr/local/gromacs Working dir: /ricardo2/ricardo/lab_alunos/veronica/tipi_files/gromacs_files/tipi-wt_HNE Process ID: 44638 Command line: gmx mdrun -v -deffnm em -nb gpu GROMACS version: 2019.6 Precision: single Memory model: 64 bit MPI library: thread_mpi OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 64) GPU support: OpenCL SIMD instructions: AVX2_256 FFT library: fftw-3.3.8-sse2-avx RDTSCP usage: enabled TNG support: enabled Hwloc support: hwloc-2.1.0 Tracing support: disabled C compiler: /usr/bin/cc GNU 9.3.0 C compiler flags: -mavx2 -mfma -O3 -DNDEBUG -funroll-all-loops -fexcess-precision=fast C++ compiler: /usr/bin/c++ GNU 9.3.0 C++ compiler flags: -mavx2 -mfma -std=c++11 -O3 -DNDEBUG -funroll-all-loops -fexcess-precision=fast OpenCL include dir: /usr/include OpenCL library: /usr/lib/x86_64-linux-gnu/libOpenCL.so OpenCL version: 2.2 Running on 1 node with total 12 cores, 24 logical cores, 1 compatible GPU Hardware detected: CPU info: Vendor: Intel Brand: Genuine Intel(R) CPU @ 2.40GHz Family: 6 Model: 63 Stepping: 1 Features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma hle htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp rtm sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic Hardware topology: Full, with devices Sockets, cores, and logical processors: Socket 0: [ 0 12] [ 1 13] [ 2 14] [ 3 15] [ 4 16] [ 5 17] [ 6 18] [ 7 19] [ 8 20] [ 9 21] [ 10 22] [ 11 23] Numa nodes: Node 0 (67275468800 bytes mem): 0 12 1 13 2 14 3 15 4 16 5 17 6 18 7 19 8 20 9 21 10 22 11 23 Latency: 0 0 1.00 Caches: L1: 32768 bytes, linesize 64 bytes, assoc. 8, shared 2 ways L2: 262144 bytes, linesize 64 bytes, assoc. 8, shared 2 ways L3: 31457280 bytes, linesize 64 bytes, assoc. 20, shared 24 ways PCI devices: 0000:02:00.0 Id: 10de:2187 Class: 0x0300 Numa: 0 0000:00:11.4 Id: 8086:8d62 Class: 0x0106 Numa: 0 0000:00:19.0 Id: 8086:15a1 Class: 0x0200 Numa: 0 0000:00:1f.2 Id: 8086:8d02 Class: 0x0106 Numa: 0 GPU info: Number of GPUs detected: 1 #0: name: GeForce GTX 1650 SUPER, vendor: NVIDIA Corporation, device version: OpenCL 1.2 CUDA, stat: compatible ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers SoftwareX 1 (2015) pp. 19-25 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit Bioinformatics 29 (2013) pp. 845-54 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation J. Chem. Theory Comput. 4 (2008) pp. 435-447 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C. Berendsen GROMACS: Fast, Flexible and Free J. Comp. Chem. 26 (2005) pp. 1701-1719 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ E. Lindahl and B. Hess and D. van der Spoel GROMACS 3.0: A package for molecular simulation and trajectory analysis J. Mol. Mod. 7 (2001) pp. 306-317 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ H. J. C. Berendsen, D. van der Spoel and R. van Drunen GROMACS: A message-passing parallel molecular dynamics implementation Comp. Phys. Comm. 91 (1995) pp. 43-56 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE CITE THE DOI FOR THIS VERSION OF GROMACS ++++ https://doi.org/10.5281/zenodo.3685922 -------- -------- --- Thank You --- -------- -------- Input Parameters: integrator = steep tinit = 0 dt = 0.001 nsteps = 50000 init-step = 0 simulation-part = 1 comm-mode = Linear nstcomm = 100 bd-fric = 0 ld-seed = -1851262774 emtol = 1000 emstep = 0.01 niter = 20 fcstep = 0 nstcgsteep = 1000 nbfgscorr = 10 rtpi = 0.05 nstxout = 0 nstvout = 0 nstfout = 0 nstlog = 1000 nstcalcenergy = 100 nstenergy = 1000 nstxout-compressed = 0 compressed-x-precision = 1000 cutoff-scheme = Verlet nstlist = 20 ns-type = Grid pbc = xyz periodic-molecules = false verlet-buffer-tolerance = 0.005 rlist = 1.05 coulombtype = PME coulomb-modifier = Potential-shift rcoulomb-switch = 0 rcoulomb = 1 epsilon-r = 1 epsilon-rf = inf vdw-type = Cut-off vdw-modifier = Potential-shift rvdw-switch = 0 rvdw = 1 DispCorr = No table-extension = 1 fourierspacing = 0.12 fourier-nx = 64 fourier-ny = 64 fourier-nz = 64 pme-order = 4 ewald-rtol = 1e-05 ewald-rtol-lj = 0.001 lj-pme-comb-rule = Geometric ewald-geometry = 0 epsilon-surface = 0 tcoupl = No nsttcouple = -1 nh-chain-length = 0 print-nose-hoover-chain-variables = false pcoupl = No pcoupltype = Isotropic nstpcouple = -1 tau-p = 1 compressibility (3x3): compressibility[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} compressibility[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} compressibility[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} ref-p (3x3): ref-p[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} ref-p[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} refcoord-scaling = No posres-com (3): posres-com[0]= 0.00000e+00 posres-com[1]= 0.00000e+00 posres-com[2]= 0.00000e+00 posres-comB (3): posres-comB[0]= 0.00000e+00 posres-comB[1]= 0.00000e+00 posres-comB[2]= 0.00000e+00 QMMM = false QMconstraints = 0 QMMMscheme = 0 MMChargeScaleFactor = 1 qm-opts: ngQM = 0 constraint-algorithm = Lincs continuation = false Shake-SOR = false shake-tol = 0.0001 lincs-order = 4 lincs-iter = 1 lincs-warnangle = 30 nwall = 0 wall-type = 9-3 wall-r-linpot = -1 wall-atomtype[0] = -1 wall-atomtype[1] = -1 wall-density[0] = 0 wall-density[1] = 0 wall-ewald-zfac = 3 pull = false awh = false rotation = false interactiveMD = false disre = No disre-weighting = Conservative disre-mixed = false dr-fc = 1000 dr-tau = 0 nstdisreout = 100 orire-fc = 0 orire-tau = 0 nstorireout = 100 free-energy = no cos-acceleration = 0 deform (3x3): deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} simulated-tempering = false swapcoords = no userint1 = 0 userint2 = 0 userint3 = 0 userint4 = 0 userreal1 = 0 userreal2 = 0 userreal3 = 0 userreal4 = 0 applied-forces: electric-field: x: E0 = 0 omega = 0 t0 = 0 sigma = 0 y: E0 = 0 omega = 0 t0 = 0 sigma = 0 z: E0 = 0 omega = 0 t0 = 0 sigma = 0 grpopts: nrdf: 79830 ref-t: 0 tau-t: 0 annealing: No annealing-npoints: 0 acc: 0 0 0 nfreeze: N N N energygrp-flags[ 0]: 0 Using 1 MPI thread Using 24 OpenMP threads 1 GPU selected for this run. Mapping of GPU IDs to the 1 GPU task in the 1 rank on this node: PP:0 PP tasks will do (non-perturbed) short-ranged interactions on the GPU Pinning threads with an auto-selected logical core stride of 1 System total charge: 0.000 Will do PME sum in reciprocal space for electrostatic interactions. ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen A smooth particle mesh Ewald method J. Chem. Phys. 103 (1995) pp. 8577-8592 -------- -------- --- Thank You --- -------- -------- Using a Gaussian width (1/beta) of 0.320163 nm for Ewald Potential shift: LJ r^-12: -1.000e+00 r^-6: -1.000e+00, Ewald -1.000e-05 Initialized non-bonded Ewald correction tables, spacing: 9.33e-04 size: 1073 Generated table with 1025 data points for 1-4 COUL. Tabscale = 500 points/nm Generated table with 1025 data points for 1-4 LJ6. Tabscale = 500 points/nm Generated table with 1025 data points for 1-4 LJ12. Tabscale = 500 points/nm Using GPU 8x8 nonbonded short-range kernels Using a 8x4 pair-list setup: updated every 20 steps, buffer 0.050 nm, rlist 1.050 nm Using Lorentz-Berthelot Lennard-Jones combination rule Removing pbc first time ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ S. Miyamoto and P. A. Kollman SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid Water Models J. Comp. Chem. 13 (1992) pp. 952-962 -------- -------- --- Thank You --- -------- -------- Note that activating steepest-descent energy minimization via the integrator .mdp option and the command gmx mdrun may be available in a different form in a future version of GROMACS, e.g. gmx minimize and an .mdp option. Initiating Steepest Descents Started Steepest Descents on rank 0 Sat Jan 2 21:19:27 2021 Steepest Descents: Tolerance (Fmax) = 1.00000e+03 Number of steps = 50000 Step Time 0 0.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 2.33560e+04 6.09804e+03 4.34744e+03 1.02682e+02 -1.04057e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 4.50995e+03 3.04399e+04 1.98989e+05 -6.58266e+05 1.44062e+04 Potential Pressure (bar) -3.77057e+05 -2.13340e+04 Step Time 1 1.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 2.24521e+04 6.05751e+03 4.34916e+03 1.05162e+02 -1.04081e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 4.49315e+03 3.04125e+04 1.79933e+05 -6.64198e+05 1.43821e+04 Potential Pressure (bar) -4.03054e+05 -2.15107e+04 Step Time 2 2.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 2.02086e+04 5.99850e+03 4.36338e+03 1.23741e+02 -1.04408e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 4.45110e+03 3.03500e+04 1.57500e+05 -6.58334e+05 1.43018e+04 Potential Pressure (bar) -4.22081e+05 -2.18661e+04 Step Time 3 3.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.60662e+04 5.99938e+03 4.40199e+03 1.64575e+02 -1.05341e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 4.37083e+03 3.02370e+04 1.37961e+05 -6.58761e+05 1.41452e+04 Potential Pressure (bar) -4.46468e+05 -2.20856e+04 Step Time 4 4.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 8.36289e+03 6.42819e+03 4.50656e+03 2.49635e+02 -1.07825e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 4.21065e+03 2.99896e+04 1.18656e+05 -6.59743e+05 1.37197e+04 Potential Pressure (bar) -4.74698e+05 -2.23110e+04 Step Time 5 5.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 4.20238e+03 6.12063e+03 4.55578e+03 2.57969e+02 -1.10260e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 4.05656e+03 2.98295e+04 1.11657e+05 -6.61281e+05 1.32673e+04 Potential Pressure (bar) -4.88436e+05 -2.24625e+04 Step Time 6 6.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 2.60415e+03 5.43888e+03 4.58960e+03 2.78832e+02 -1.12214e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.87178e+03 2.96665e+04 1.05752e+05 -6.63590e+05 1.26990e+04 Potential Pressure (bar) -4.99811e+05 -2.26114e+04 Step Time 7 7.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.64114e+03 4.93249e+03 4.61133e+03 2.72052e+02 -1.13662e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.69830e+03 2.95699e+04 1.01604e+05 -6.64809e+05 1.20654e+04 Potential Pressure (bar) -5.07551e+05 -2.27727e+04 Step Time 8 8.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 4.39012e+03 4.90020e+03 4.65702e+03 2.89590e+02 -1.14656e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.50821e+03 2.93401e+04 9.68035e+04 -6.71268e+05 1.12096e+04 Potential Pressure (bar) -5.17317e+05 -2.29698e+04 Step Time 9 9.00000 Step Time 10 10.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.31393e+03 4.50076e+03 4.63947e+03 2.68302e+02 -1.15033e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.49527e+03 2.94045e+04 9.61220e+04 -6.73513e+05 1.10737e+04 Potential Pressure (bar) -5.23845e+05 -2.29839e+04 Step Time 11 11.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 6.35559e+03 4.94215e+03 4.66084e+03 2.69568e+02 -1.15398e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.39117e+03 2.92220e+04 9.30748e+04 -6.75248e+05 1.04682e+04 Potential Pressure (bar) -5.24018e+05 -2.31500e+04 Step Time 12 12.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.92603e+03 4.43571e+03 4.64638e+03 2.59906e+02 -1.15890e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.38767e+03 2.93026e+04 9.26105e+04 -6.77090e+05 1.03655e+04 Potential Pressure (bar) -5.31314e+05 -2.31973e+04 Step Time 13 13.00000 Step Time 14 14.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.70906e+03 4.15035e+03 4.65342e+03 2.53593e+02 -1.15979e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.34711e+03 2.92245e+04 9.24335e+04 -6.76881e+05 1.01658e+04 Potential Pressure (bar) -5.32103e+05 -2.32423e+04 Step Time 15 15.00000 Step Time 16 16.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 9.54480e+02 4.06971e+03 4.65050e+03 2.52684e+02 -1.16258e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.33630e+03 2.92379e+04 9.19151e+04 -6.80454e+05 1.00586e+04 Potential Pressure (bar) -5.37141e+05 -2.32762e+04 Step Time 17 17.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.99779e+03 4.04257e+03 4.65878e+03 2.46492e+02 -1.16603e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.27886e+03 2.91527e+04 9.05871e+04 -6.82986e+05 9.66727e+03 Potential Pressure (bar) -5.40520e+05 -2.33752e+04 Step Time 18 18.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.06676e+03 3.97048e+03 4.65590e+03 2.46909e+02 -1.16919e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.27119e+03 2.91770e+04 9.03618e+04 -6.84347e+05 9.57489e+03 Potential Pressure (bar) -5.43191e+05 -2.34142e+04 Step Time 19 19.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 2.59950e+03 4.03925e+03 4.66433e+03 2.40477e+02 -1.17010e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.23257e+03 2.91011e+04 8.95437e+04 -6.85750e+05 9.31369e+03 Potential Pressure (bar) -5.44186e+05 -2.34837e+04 Step Time 20 20.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.46317e+03 3.98677e+03 4.66073e+03 2.42218e+02 -1.17404e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.22781e+03 2.91391e+04 8.91967e+04 -6.86535e+05 9.23454e+03 Potential Pressure (bar) -5.46558e+05 -2.35163e+04 Step Time 21 21.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 3.73877e+03 4.15421e+03 4.67058e+03 2.36322e+02 -1.17323e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.19673e+03 2.90564e+04 8.79288e+04 -6.87507e+05 9.02894e+03 Potential Pressure (bar) -5.46669e+05 -2.35712e+04 Step Time 22 22.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 2.45017e+03 4.17095e+03 4.66579e+03 2.39712e+02 -1.17810e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.19585e+03 2.91131e+04 8.80192e+04 -6.89313e+05 8.96535e+03 Potential Pressure (bar) -5.49671e+05 -2.36001e+04 Step Time 23 23.00000 Step Time 24 24.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.04056e+03 3.69222e+03 4.66949e+03 2.31411e+02 -1.17788e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.17337e+03 2.90657e+04 8.84240e+04 -6.88957e+05 8.87023e+03 Potential Pressure (bar) -5.50968e+05 -2.36272e+04 Step Time 25 25.00000 Step Time 26 26.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.08915e+03 3.75634e+03 4.67017e+03 2.32412e+02 -1.18116e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.16130e+03 2.90719e+04 8.79680e+04 -6.89325e+05 8.76078e+03 Potential Pressure (bar) -5.51796e+05 -2.36668e+04 Step Time 27 27.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.26530e+03 3.66106e+03 4.67480e+03 2.27685e+02 -1.18139e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.14363e+03 2.90355e+04 8.75095e+04 -6.89730e+05 8.64697e+03 Potential Pressure (bar) -5.52747e+05 -2.37022e+04 Step Time 28 28.00000 Energies (kJ/mol) Bond U-B Proper Dih. Improper Dih. CMAP Dih. 1.36521e+03 3.78395e+03 4.67493e+03 2.29557e+02 -1.18480e+03 LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. 3.13484e+03 2.90512e+04 8.68894e+04 -6.96238e+05 8.55968e+03 Potential Pressure (bar) -5.59734e+05 -2.36714e+04 Step Time 29 29.00000 Step Time 30 30.00000 Step Time 31 31.00000 Step Time 32 32.00000 Step Time 33 33.00000 Step Time 34 34.00000 Step Time 35 35.00000 Step Time 36 36.00000 Step Time 37 37.00000 Step Time 38 38.00000 Step Time 39 39.00000 Step Time 40 40.00000 Step Time 41 41.00000 Step Time 42 42.00000 Step Time 43 43.00000 Energy minimization has stopped, but the forces have not converged to the requested precision Fmax < 1000 (which may not be possible for your system). It stopped because the algorithm tried to make a new step whose size was too small, or there was no change in the energy since last step. Either way, we regard the minimization as converged to within the available machine precision, given your starting configuration and EM parameters. Double precision normally gives you higher accuracy, but this is often not needed for preparing to run molecular dynamics. You might need to increase your constraint accuracy, or turn off constraints altogether (set constraints = none in mdp file) Steepest Descents converged to machine precision in 44 steps, but did not reach the requested Fmax < 1000. Potential Energy = -5.5973362e+05 Maximum force = 1.3222101e+04 on atom 2727 Norm of force = 2.8282798e+02 Finished mdrun on rank 0 Sat Jan 2 21:19:27 2021