Beginning:
:-) GROMACS - gmx mdrun, 2021-MODIFIED (-:
GROMACS is written by:
Andrey Alekseenko Emile Apol Rossen Apostolov
Paul Bauer Herman J.C. Berendsen Par Bjelkmar
Christian Blau Viacheslav Bolnykh Kevin Boyd
Aldert van Buuren Rudi van Drunen Anton Feenstra
Gilles Gouaillardet Alan Gray Gerrit Groenhof
Anca Hamuraru Vincent Hindriksen M. Eric Irrgang
Aleksei Iupinov Christoph Junghans Joe Jordan
Dimitrios Karkoulis Peter Kasson Jiri Kraus
Carsten Kutzner Per Larsson Justin A. Lemkul
Viveca Lindahl Magnus Lundborg Erik Marklund
Pascal Merz Pieter Meulenhoff Teemu Murtola
Szilard Pall Sander Pronk Roland Schulz
Michael Shirts Alexey Shvetsov Alfons Sijbers
Peter Tieleman Jon Vincent Teemu Virolainen
Christian Wennberg Maarten Wolf Artem Zhmurov
and the project leaders:
Mark Abraham, Berk Hess, Erik Lindahl, and David van der Spoel
Copyright (c) 1991-2000, University of Groningen, The Netherlands.
Copyright (c) 2001-2019, The GROMACS development team at
Uppsala University, Stockholm University and
the Royal Institute of Technology, Sweden.
check out http://www.gromacs.org for more information.
GROMACS is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.
GROMACS: gmx mdrun, version 2021-MODIFIED
Executable: /software/software/GROMACS/2021-foss-2020b/bin/gmx_mpi
Data prefix: /software/software/GROMACS/2021-foss-2020b
Working dir: /home/s3347648/MD
Process ID: 28346
Command line:
gmx_mpi mdrun -v -deffnm step6_1
GROMACS version: 2021-MODIFIED
This program has been built from source code that has been altered and does not match the code released as part of the official GROMACS version 2021-MODIFIED. If you did not intend to use an altered GROMACS version, make sure to download an intact source distribution and compile that before proceeding.
If you have modified the source code, you are strongly encouraged to set your custom version suffix (using -DGMX_VERSION_STRING_OF_FORK) which will can help later with scientific reproducibility but also when reporting bugs.
Release checksum: 3e06a5865d6ff726fc417dea8d55afd37ac3cbb94c02c54c76d7a881c49c5dd8
Computed checksum: 703b977784a0aa51372c3d549c8d6a3d866be317e94e2b89ea42bf0257c5aa04
Precision: mixed
Memory model: 64 bit
MPI library: MPI
OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 64)
GPU support: disabled
SIMD instructions: AVX2_256
FFT library: fftw-3.3.8-sse2-avx-avx2-avx2_128
RDTSCP usage: enabled
TNG support: enabled
Hwloc support: disabled
Tracing support: disabled
C compiler: /software/software/OpenMPI/4.0.5-GCC-10.2.0/bin/mpicc GNU 10.2.0
C compiler flags: -mavx2 -mfma -Wno-missing-field-initializers -fexcess-precision=fast -funroll-all-loops -O3 -DNDEBUG
C++ compiler: /software/software/OpenMPI/4.0.5-GCC-10.2.0/bin/mpicxx GNU 10.2.0
C++ compiler flags: -mavx2 -mfma -Wno-missing-field-initializers -fexcess-precision=fast -funroll-all-loops -fopenmp -O3 -DNDEBUG
Running on 2 nodes with total 48 cores, 48 logical cores
Cores per node: 24
Logical cores per node: 24
Hardware detected on host pg-node024 (the node of MPI rank 0):
CPU info:
Vendor: Intel
Brand: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
Family: 6 Model: 63 Stepping: 2
Features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
Hardware topology: Only logical processor count
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E.
Lindahl
GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers
SoftwareX 1 (2015) pp. 19-25
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl
Tackling Exascale Software Challenges in Molecular Dynamics Simulations with
GROMACS
In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl
GROMACS 4.5: a high-throughput and highly parallel open source molecular
simulation toolkit
Bioinformatics 29 (2013) pp. 845-54
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------
++++ PLEASE CITE THE DOI FOR THIS VERSION OF GROMACS ++++
https://doi.org/10.5281/zenodo.4457626
-------- -------- --- Thank You --- -------- --------
The number of OpenMP threads was set by environment variable OMP_NUM_THREADS to 1
Input Parameters:
integrator = md
tinit = 0
dt = 0.002
nsteps = 12500000
init-step = 0
simulation-part = 1
mts = false
comm-mode = Linear
nstcomm = 100
bd-fric = 0
ld-seed = 2147205111
emtol = 10
emstep = 0.01
niter = 20
fcstep = 0
nstcgsteep = 1000
nbfgscorr = 10
rtpi = 0.05
nstxout = 0
nstvout = 50000
nstfout = 50000
nstlog = 1000
nstcalcenergy = 100
nstenergy = 1000
nstxout-compressed = 50000
compressed-x-precision = 1000
cutoff-scheme = Verlet
nstlist = 20
pbc = xyz
periodic-molecules = false
verlet-buffer-tolerance = 0.005
rlist = 1.216
coulombtype = PME
coulomb-modifier = Potential-shift
rcoulomb-switch = 0
rcoulomb = 1.2
epsilon-r = 1
epsilon-rf = inf
vdw-type = Cut-off
vdw-modifier = Force-switch
rvdw-switch = 1
rvdw = 1.2
DispCorr = No
table-extension = 1
fourierspacing = 0.12
fourier-nx = 52
fourier-ny = 52
fourier-nz = 52
pme-order = 4
ewald-rtol = 1e-05
ewald-rtol-lj = 0.001
lj-pme-comb-rule = Geometric
ewald-geometry = 0
epsilon-surface = 0
tcoupl = Nose-Hoover
nsttcouple = 10
nh-chain-length = 1
print-nose-hoover-chain-variables = false
pcoupl = Parrinello-Rahman
pcoupltype = Isotropic
nstpcouple = 10
tau-p = 5
compressibility (3x3):
compressibility[ 0]={ 4.50000e-05, 0.00000e+00, 0.00000e+00}
compressibility[ 1]={ 0.00000e+00, 4.50000e-05, 0.00000e+00}
compressibility[ 2]={ 0.00000e+00, 0.00000e+00, 4.50000e-05}
ref-p (3x3):
ref-p[ 0]={ 1.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p[ 1]={ 0.00000e+00, 1.00000e+00, 0.00000e+00}
ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 1.00000e+00}
refcoord-scaling = No
posres-com (3):
posres-com[0]= 0.00000e+00
posres-com[1]= 0.00000e+00
posres-com[2]= 0.00000e+00
posres-comB (3):
posres-comB[0]= 0.00000e+00
posres-comB[1]= 0.00000e+00
posres-comB[2]= 0.00000e+00
QMMM = false
qm-opts:
ngQM = 0
constraint-algorithm = Lincs
continuation = true
Shake-SOR = false
shake-tol = 0.0001
lincs-order = 4
lincs-iter = 1
lincs-warnangle = 30
nwall = 0
wall-type = 9-3
wall-r-linpot = -1
wall-atomtype[0] = -1
wall-atomtype[1] = -1
wall-density[0] = 0
wall-density[1] = 0
wall-ewald-zfac = 3
pull = false
awh = false
rotation = false
interactiveMD = false
disre = No
disre-weighting = Conservative
disre-mixed = false
dr-fc = 1000
dr-tau = 0
nstdisreout = 100
orire-fc = 0
orire-tau = 0
nstorireout = 100
free-energy = no
cos-acceleration = 0
deform (3x3):
deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
simulated-tempering = false
swapcoords = no
userint1 = 0
userint2 = 0
userint3 = 0
userint4 = 0
userreal1 = 0
userreal2 = 0
userreal3 = 0
userreal4 = 0
applied-forces:
electric-field:
x:
E0 = 0
omega = 0
t0 = 0
sigma = 0
y:
E0 = 0
omega = 0
t0 = 0
sigma = 0
z:
E0 = 0
omega = 0
t0 = 0
sigma = 0
density-guided-simulation:
active = false
group = protein
similarity-measure = inner-product
atom-spreading-weight = unity
force-constant = 1e+09
gaussian-transform-spreading-width = 0.2
gaussian-transform-spreading-range-in-multiples-of-width = 4
reference-density-filename = reference.mrc
nst = 1
normalize-densities = true
adaptive-force-scaling = false
adaptive-force-scaling-time-constant = 4
shift-vector =
transformation-matrix =
grpopts:
nrdf: 10237 32970
ref-t: 310.15 310.15
tau-t: 1 1
annealing: No No
annealing-npoints: 0 0
acc: 0 0 0
nfreeze: N N N
energygrp-flags[ 0]: 0
Changing nstlist from 20 to 100, rlist from 1.216 to 1.334
Initializing Domain Decomposition on 4 ranks
Dynamic load balancing: auto
Minimum cell size due to atom displacement: 0.760 nm
Initial maximum distances in bonded interactions:
two-body bonded interactions: 0.436 nm, LJ-14, atoms 2432 2439
multi-body bonded interactions: 0.498 nm, CMAP Dih., atoms 3286 3295
Minimum cell size due to bonded interactions: 0.548 nm
Maximum distance for 5 constraints, at 120 deg. angles, all-trans: 0.222 nm
Estimated maximum distance required for P-LINCS: 0.222 nm
Scaling the initial minimum size with 1/0.8 (option -dds) = 1.25
Using 0 separate PME ranks, as there are too few total
ranks for efficient splitting
Optimizing the DD grid for 4 cells with a minimum initial size of 0.950 nm
The maximum allowed number of cells is: X 6 Y 6 Z 6
Domain decomposition grid 4 x 1 x 1, separate PME ranks 0
PME domain decomposition: 4 x 1 x 1
Domain decomposition rank 0, coordinates 0 0 0
The initial number of communication pulses is: X 1
The initial domain decomposition cell size is: X 1.50 nm
The maximum allowed distance for atoms involved in interactions is:
non-bonded interactions 1.334 nm
(the following are initial values, they could change due to box deformation)
two-body bonded interactions (-rdd) 1.334 nm
multi-body bonded interactions (-rdd) 1.334 nm
atoms separated by up to 5 constraints (-rcon) 1.500 nm
When dynamic load balancing gets turned on, these settings will change to:
The maximum number of communication pulses is: X 2
The minimum size for domain decomposition cells is 1.024 nm
The requested allowed shrink of DD cells (option -dds) is: 0.80
The allowed shrink of domain decomposition cells is: X 0.68
The maximum allowed distance for atoms involved in interactions is:
non-bonded interactions 1.334 nm
two-body bonded interactions (-rdd) 1.334 nm
multi-body bonded interactions (-rdd) 1.024 nm
atoms separated by up to 5 constraints (-rcon) 1.024 nm
Using two step summing over 2 groups of on average 2.0 ranks
Using 4 MPI processes
Non-default thread affinity set, disabling internal thread affinity
Using 1 OpenMP thread per MPI process
System total charge: 0.000
Will do PME sum in reciprocal space for electrostatic interactions.
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Potential shift: LJ r^-12: -2.648e-01 r^-6: -5.349e-01, Ewald -8.333e-06
Initialized non-bonded Ewald tables, spacing: 1.02e-03 size: 1176
Generated table with 1167 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1167 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1167 data points for 1-4 LJ12.
Tabscale = 500 points/nm
Using SIMD 4x8 nonbonded short-range kernels
Using a dual 4x8 pair-list setup updated with dynamic pruning:
outer list: updated every 100 steps, buffer 0.134 nm, rlist 1.334 nm
inner list: updated every 15 steps, buffer 0.002 nm, rlist 1.202 nm
At tolerance 0.005 kJ/mol/ps per atom, equivalent classical 1x1 list would be:
outer list: updated every 100 steps, buffer 0.289 nm, rlist 1.489 nm
inner list: updated every 15 steps, buffer 0.060 nm, rlist 1.260 nm
Initializing Parallel LINear Constraint Solver
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess
P-LINCS: A Parallel Linear Constraint Solver for molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 116-122
-------- -------- --- Thank You --- -------- --------
The number of constraints is 2051
There are constraints between atoms in different decomposition domains,
will communicate selected coordinates each lincs iteration
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------
Linking all bonded interactions to atoms
Intra-simulation communication will occur every 10 steps.
There are: 20580 Atoms
Atom distribution over 4 domains: av 5145 stddev 171 min 4930 max 5354
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
0: SOLU
1: SOLV
*End:*
Energy conservation over simulation part #1 of length 25000 ns, time 0 to 25000 ns
Conserved energy drift: -3.11e-04 kJ/mol/ps per atom
<====== ############### ==>
<==== A V E R A G E S ====>
<== ############### ======>
Statistics over 12500001 steps using 125001 frames
Energies (kJ/mol)
Bond U-B Proper Dih. Improper Dih. CMAP Dih.
3.51018e+03 9.83976e+03 1.03884e+04 5.96427e+02 -4.44274e+02
LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip.
2.68622e+03 3.66119e+04 1.57117e+04 -3.31705e+05 1.09901e+03
Potential Kinetic En. Total Energy Conserved En. Temperature
-2.51706e+05 5.57103e+04 -1.95996e+05 -2.68776e+05 3.10154e+02
Pressure (bar) Constr. rmsd
1.38171e+00 0.00000e+00
Box-X Box-Y Box-Z
5.86104e+00 5.86104e+00 5.86104e+00
Total Virial (kJ/mol)
1.85910e+04 -3.72208e+00 -1.96834e+01
-3.68913e+00 1.85317e+04 8.71106e-01
-1.96866e+01 8.31952e-01 1.85673e+04
Pressure (bar)
1.16684e+00 -2.82005e-01 1.58376e-01
-2.87441e-01 2.72299e+00 -8.67067e-01
1.58895e-01 -8.60609e-01 2.55302e-01
T-SOLU T-SOLV
3.10164e+02 3.10150e+02
M E G A - F L O P S A C C O U N T I N G
NB=Group-cutoff nonbonded kernels NxN=N-by-N cluster Verlet kernels
RF=Reaction-Field VdW=Van der Waals QSTab=quadratic-spline table
W3=SPC/TIP3p W4=TIP4p (single or pairs)
V&F=Potential and force V=Potential only F=Force only
Computing: M-Number M-Flops % Flops
-----------------------------------------------------------------------------
Pair Search distance check 1502727.649524 13524548.846 0.1
NxN Ewald Elec. + LJ [F] 239350552.475760 18669343093.109 94.0
NxN Ewald Elec. + LJ [V&F] 2417701.692688 311883518.357 1.6
NxN Ewald Elec. [F] 1991262.773808 121467029.202 0.6
NxN Ewald Elec. [V&F] 20113.927824 1689569.937 0.0
1,4 nonbonded interactions 134537.510763 12108375.969 0.1
Calc Weights 771750.061740 27783002.223 0.1
Spread Q Bspline 16464001.317120 32928002.634 0.2
Gather F Bspline 16464001.317120 98784007.903 0.5
3D-FFT 60114554.809164 480916438.473 2.4
Solve PME 33800.002704 2163200.173 0.0
Reset In Box 2572.088400 7716.265 0.0
CG-CoM 2572.520580 7717.562 0.0
Bonds 26012.502081 1534737.623 0.0
Propers 131400.010512 30090602.407 0.2
Impropers 8362.500669 1739400.139 0.0
Virial 25950.020760 467100.374 0.0
Stop-CM 2572.520580 25725.206 0.0
Calc-Ekin 51450.041160 1389151.111 0.0
Lincs 27299.779975 1637986.798 0.0
Lincs-Mat 153289.864968 613159.460 0.0
Constraint-V 272487.121859 2452384.097 0.0
Constraint-Vir 24518.751814 588450.044 0.0
Settle 72629.187303 26872799.302 0.1
CMAP 3262.500261 5546250.444 0.0
Urey-Bradley 93562.507485 17121938.870 0.1
-----------------------------------------------------------------------------
Total 19862685906.527 100.0
-----------------------------------------------------------------------------
D O M A I N D E C O M P O S I T I O N S T A T I S T I C S
av. #atoms communicated per step for force: 2 x 18740.9
av. #atoms communicated per step for LINCS: 2 x 1159.2
Dynamic load balancing report:
DLB was turned on during the run due to measured imbalance.
Average load imbalance: 2.3%.
The balanceable part of the MD step is 83%, load imbalance is computed from this.
Part of the total run time spent waiting due to load imbalance: 1.9%.
Steps where the load balancing was limited by -rdd, -rcon and/or -dds: X 0 %
R E A L C Y C L E A N D T I M E A C C O U N T I N G
On 4 MPI ranks
Computing: Num Num Call Wall time Giga-Cycles
Ranks Threads Count (s) total sum %
-----------------------------------------------------------------------------
Domain decomp. 4 1 125000 378.257 3782.561 0.2
DD comm. load 4 1 125000 1.495 14.947 0.0
DD comm. bounds 4 1 75198 3.261 32.608 0.0
Neighbor search 4 1 125001 1167.797 11677.935 0.8
Comm. coord. 4 1 12375000 476.096 4760.944 0.3
Force 4 1 12500001 126226.745 1262264.071 82.6
Wait + Comm. F 4 1 12500001 431.946 4319.445 0.3
PME mesh 4 1 12500001 21290.964 212909.069 13.9
NB X/F buffer ops. 4 1 37250001 679.277 6792.753 0.4
Write traj. 4 1 420 28.558 285.577 0.0
Update 4 1 12500001 352.373 3523.723 0.2
Constraints 4 1 12500001 1420.637 14206.334 0.9
Comm. energies 4 1 1250001 80.893 808.927 0.1
Rest 236.878 2368.771 0.2
-----------------------------------------------------------------------------
Total 152775.175 1527747.664 100.0
-----------------------------------------------------------------------------
Breakdown of PME mesh computation
-----------------------------------------------------------------------------
PME redist. X/F 4 1 25000002 4788.207 47881.944 3.1
PME spread 4 1 12500001 5049.845 50498.320 3.3
PME gather 4 1 12500001 2965.756 29657.479 1.9
PME 3D-FFT 4 1 25000002 5932.719 59327.032 3.9
PME 3D-FFT Comm. 4 1 25000002 1747.479 17474.748 1.1
PME solve Elec 4 1 12500001 782.267 7822.651 0.5
-----------------------------------------------------------------------------
Core t (s) Wall t (s) (%)
Time: 611100.697 152775.175 400.0
1d18h26:15
(ns/day) (hour/ns)
Performance: 14.138 1.698
Finished mdrun on rank 0 Sun Apr 4 09:29:33 2021
I hope this helps