Thank you.
Running this:
LD_LIBRARY_PATH="/opt/rocm-5.5.1/lib:$LD_LIBRARY_PATH" hipsycl-info
I get the same error:
[hipSYCL Warning] **backend_loader: Could not load backend plugin: /usr/local/lib/hipSYCL/librt-backend-hip.so**
[hipSYCL Warning] /usr/local/lib/hipSYCL/**librt-backend-hip.so: undefined symbol: hipEventQuery**
=================Backend information===================
Loaded backend 0: OpenMP
Found device: hipSYCL OpenMP host device
=================Device information===================
***************** Devices for backend OpenMP *****************
Device 0:
General device information:
Name: hipSYCL OpenMP host device
Backend: OpenMP
Vendor: the hipSYCL project
Arch: <native-cpu>
Driver version: 1.2
Is CPU: 1
**Is GPU: 0**
.....
rocm-smi:
======================= ROCm System Management Interface =======================
================================= Concise Info =================================
GPU Temp (DieEdge) AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%
0 64.0c 60.0W 719Mhz 456Mhz 15.69% auto 265.0W 0% 0%
================================================================================
============================= End of ROCm SMI Log ==============================
md.log
:-) GROMACS - gmx mdrun, 2023.1 (-:
Copyright 1991-2023 The GROMACS Authors.
GROMACS is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.
Current GROMACS contributors:
Mark Abraham Andrey Alekseenko Cathrine Bergh
Christian Blau Eliane Briand Mahesh Doijade
Stefan Fleischmann Vytas Gapsys Gaurav Garg
Sergey Gorelov Gilles Gouaillardet Alan Gray
M. Eric Irrgang Farzaneh Jalalypour Joe Jordan
Christoph Junghans Prashanth Kanduri Sebastian Keller
Carsten Kutzner Justin A. Lemkul Magnus Lundborg
Pascal Merz Vedran Miletic Dmitry Morozov
Szilard Pall Roland Schulz Michael Shirts
Alexey Shvetsov Balint Soproni David van der Spoel
Philip Turner Carsten Uphoff Alessandra Villa
Sebastian Wingbermuehle Artem Zhmurov
Previous GROMACS contributors:
Emile Apol Rossen Apostolov James Barnett
Herman J.C. Berendsen Par Bjelkmar Viacheslav Bolnykh
Kevin Boyd Aldert van Buuren Carlo Camilloni
Rudi van Drunen Anton Feenstra Oliver Fleetwood
Gerrit Groenhof Bert de Groot Anca Hamuraru
Vincent Hindriksen Victor Holanda Aleksei Iupinov
Dimitrios Karkoulis Peter Kasson Sebastian Kehl
Jiri Kraus Per Larsson Viveca Lindahl
Erik Marklund Pieter Meulenhoff Teemu Murtola
Sander Pronk Alfons Sijbers Peter Tieleman
Jon Vincent Teemu Virolainen Christian Wennberg
Maarten Wolf
Coordinated by the GROMACS project leaders:
Paul Bauer, Berk Hess, and Erik Lindahl
GROMACS: gmx mdrun, version 2023.1
Executable: /usr/local/apps/gromacs-2023.1/build/bin/gmx
Data prefix: /usr/local/apps/gromacs-2023.1 (source tree)
Working dir: /root/2and3dimethylbutane
Process ID: 3997
Command line:
gmx mdrun
GROMACS version: 2023.1
Precision: mixed
Memory model: 64 bit
MPI library: thread_mpi
OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 128)
GPU support: SYCL (hipSYCL)
NB cluster size: 8
SIMD instructions: AVX_256
CPU FFT library: fftw-3.3.8-sse2-avx
GPU FFT library: VkFFT internal (1.2.26-b15cb0ca3e884bdb6c901a12d87aa8aadf7637d8) with HIP backend
Multi-GPU FFT: none
RDTSCP usage: enabled
TNG support: enabled
Hwloc support: disabled
Tracing support: disabled
C compiler: /opt/rocm-5.5.1/llvm/bin/clang Clang 16.0.0
C compiler flags: -mavx -Wno-missing-field-initializers -g
C++ compiler: /opt/rocm-5.5.1/llvm/bin/clang++ Clang 16.0.0
C++ compiler flags: -mavx -Wno-reserved-identifier -Wno-missing-field-initializers -Weverything -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-source-uses-openmp -Wno-c++17-extensions -Wno-documentation-unknown-command -Wno-covered-switch-default -Wno-switch-enum -Wno-extra-semi-stmt -Wno-weak-vtables -Wno-shadow -Wno-padded -Wno-reserved-id-macro -Wno-double-promotion -Wno-exit-time-destructors -Wno-global-constructors -Wno-documentation -Wno-format-nonliteral -Wno-used-but-marked-unused -Wno-float-equal -Wno-cuda-compat -Wno-conditional-uninitialized -Wno-conversion -Wno-disabled-macro-expansion -Wno-unused-macros -Wno-unused-parameter -Wno-unused-variable -Wno-newline-eof -Wno-old-style-cast -Wno-zero-as-null-pointer-constant -Wno-unused-but-set-variable -Wno-sign-compare -Wno-unused-result -Wno-cast-function-type-strict -fopenmp=libomp -g
BLAS library: External - detected on the system
LAPACK library: External - detected on the system
hipSYCL launcher: /usr/local/lib/cmake/hipSYCL/syclcc-launcher
hipSYCL flags: -Wno-unknown-cuda-version -Wno-unknown-attributes --hipsycl-targets="hip:gfx1100"
hipSYCL GPU flags: -ffast-math;-fgpu-inline-threshold=99999
hipSYCL targets: hip:gfx1100
hipSYCL version: hipSYCL 0.9.4-git
Running on 1 node with total 4 cores, 8 processing units, 1 compatible GPU
Hardware detected on host hdomamd01:
CPU info:
Vendor: Intel
Brand: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
Family: 6 Model: 58 Stepping: 9
Features: aes apic avx clfsh cmov cx8 cx16 f16c htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm popcnt pse rdrnd rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
Hardware topology: Basic
Packages, cores, and logical processors:
[indices refer to OS logical processors]
Package 0: [ 0 4] [ 1 5] [ 2 6] [ 3 7]
CPU limit set by OS: -1 Recommended max number of threads: 8
GPU info:
Number of GPUs detected: 1
#0: name: Radeon RX 7900 XT, architecture 11.0.0, vendor: AMD, device version: 1.2 hipSYCL 0.9.4-git, driver version 50530202, status: compatible
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E.
Lindahl
GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers
SoftwareX 1 (2015) pp. 19-25
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl
Tackling Exascale Software Challenges in Molecular Dynamics Simulations with
GROMACS
In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl
GROMACS 4.5: a high-throughput and highly parallel open source molecular
simulation toolkit
Bioinformatics 29 (2013) pp. 845-54
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------
++++ PLEASE CITE THE DOI FOR THIS VERSION OF GROMACS ++++
https://doi.org/10.5281/zenodo.7852175
-------- -------- --- Thank You --- -------- --------
Input Parameters:
integrator = md
tinit = 0
dt = 0.002
nsteps = 50000
init-step = 0
simulation-part = 1
mts = false
comm-mode = Linear
nstcomm = 100
bd-fric = 0
ld-seed = -714788881
emtol = 10
emstep = 0.01
niter = 20
fcstep = 0
nstcgsteep = 1000
nbfgscorr = 10
rtpi = 0.05
nstxout = 1000
nstvout = 1000
nstfout = 0
nstlog = 1000
nstcalcenergy = 100
nstenergy = 1000
nstxout-compressed = 0
compressed-x-precision = 1000
cutoff-scheme = Verlet
nstlist = 10
pbc = xyz
periodic-molecules = false
verlet-buffer-tolerance = 0.005
rlist = 1
coulombtype = PME
coulomb-modifier = Potential-shift
rcoulomb-switch = 0
rcoulomb = 1
epsilon-r = 1
epsilon-rf = inf
vdw-type = Cut-off
vdw-modifier = Potential-shift
rvdw-switch = 0
rvdw = 1
DispCorr = No
table-extension = 1
fourierspacing = 0.16
fourier-nx = 32
fourier-ny = 32
fourier-nz = 32
pme-order = 4
ewald-rtol = 1e-05
ewald-rtol-lj = 0.001
lj-pme-comb-rule = Geometric
ewald-geometry = 3d
epsilon-surface = 0
ensemble-temperature-setting = constant
ensemble-temperature = 298
tcoupl = V-rescale
nsttcouple = 100
nh-chain-length = 0
print-nose-hoover-chain-variables = false
pcoupl = No
pcoupltype = Isotropic
nstpcouple = -1
tau-p = 1
compressibility (3x3):
compressibility[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
compressibility[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
compressibility[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p (3x3):
ref-p[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
refcoord-scaling = No
posres-com (3):
posres-com[0]= 0.00000e+00
posres-com[1]= 0.00000e+00
posres-com[2]= 0.00000e+00
posres-comB (3):
posres-comB[0]= 0.00000e+00
posres-comB[1]= 0.00000e+00
posres-comB[2]= 0.00000e+00
QMMM = false
qm-opts:
ngQM = 0
constraint-algorithm = Lincs
continuation = true
Shake-SOR = false
shake-tol = 0.0001
lincs-order = 4
lincs-iter = 1
lincs-warnangle = 30
nwall = 0
wall-type = 9-3
wall-r-linpot = -1
wall-atomtype[0] = -1
wall-atomtype[1] = -1
wall-density[0] = 0
wall-density[1] = 0
wall-ewald-zfac = 3
pull = false
awh = false
rotation = false
interactiveMD = false
disre = No
disre-weighting = Conservative
disre-mixed = false
dr-fc = 1000
dr-tau = 0
nstdisreout = 100
orire-fc = 0
orire-tau = 0
nstorireout = 100
free-energy = no
cos-acceleration = 0
deform (3x3):
deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
simulated-tempering = false
swapcoords = no
userint1 = 0
userint2 = 0
userint3 = 0
userint4 = 0
userreal1 = 0
userreal2 = 0
userreal3 = 0
userreal4 = 0
applied-forces:
electric-field:
x:
E0 = 0
omega = 0
t0 = 0
sigma = 0
y:
E0 = 0
omega = 0
t0 = 0
sigma = 0
z:
E0 = 0
omega = 0
t0 = 0
sigma = 0
density-guided-simulation:
active = false
group = protein
similarity-measure = inner-product
atom-spreading-weight = unity
force-constant = 1e+09
gaussian-transform-spreading-width = 0.2
gaussian-transform-spreading-range-in-multiples-of-width = 4
reference-density-filename = reference.mrc
nst = 1
normalize-densities = true
adaptive-force-scaling = false
adaptive-force-scaling-time-constant = 4
shift-vector =
transformation-matrix =
qmmm-cp2k:
active = false
qmgroup = System
qmmethod = PBE
qmfilenames =
qmcharge = 0
qmmultiplicity = 1
grpopts:
nrdf: 6497
ref-t: 298
tau-t: 1
annealing: No
annealing-npoints: 0
acc: 0 0 0
nfreeze: N N N
energygrp-flags[ 0]: 0
Changing nstlist from 10 to 100, rlist from 1 to 1.081
Update groups can not be used for this system because there are three or more consecutively coupled constraints
NOTE: SYCL GPU support in GROMACS, and the compilers, libraries,
and drivers that it depends on are fairly new.
Please, pay extra attention to the correctness of your results,
and update to the latest GROMACS patch version if warranted.
1 GPU selected for this run.
Mapping of GPU IDs to the 2 GPU tasks in the 1 rank on this node:
PP:0,PME:0
PP tasks will do (non-perturbed) short-ranged interactions on the GPU
PP task will update and constrain coordinates on the GPU
PME tasks will do all aspects on the GPU
Using 1 MPI thread
Using 4 OpenMP threads
System total charge: 0.000
Will do PME sum in reciprocal space for electrostatic interactions.
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------
Using a Gaussian width (1/beta) of 0.320163 nm for Ewald
Potential shift: LJ r^-12: -1.000e+00 r^-6: -1.000e+00, Ewald -1.000e-05
Initialized non-bonded Coulomb Ewald tables, spacing: 9.33e-04 size: 1073
Generated table with 1040 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1040 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1040 data points for 1-4 LJ12.
Tabscale = 500 points/nm
Using GPU 8x8 nonbonded short-range kernels
Using a dual 8x8 pair-list setup updated with dynamic, rolling pruning:
outer list: updated every 100 steps, buffer 0.081 nm, rlist 1.081 nm
inner list: updated every 26 steps, buffer 0.001 nm, rlist 1.001 nm
At tolerance 0.005 kJ/mol/ps per atom, equivalent classical 1x1 list would be:
outer list: updated every 100 steps, buffer 0.178 nm, rlist 1.178 nm
inner list: updated every 26 steps, buffer 0.030 nm, rlist 1.030 nm
Using Lorentz-Berthelot Lennard-Jones combination rule
Pinning threads with an auto-selected logical cpu stride of 2
Initializing LINear Constraint Solver
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and H. Bekker and H. J. C. Berendsen and J. G. E. M. Fraaije
LINCS: A Linear Constraint Solver for molecular simulations
J. Comp. Chem. 18 (1997) pp. 1463-1472
-------- -------- --- Thank You --- -------- --------
The number of constraints is 2500
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
G. Bussi, D. Donadio and M. Parrinello
Canonical sampling through velocity rescaling
J. Chem. Phys. 126 (2007) pp. 014101
-------- -------- --- Thank You --- -------- --------
There are: 3000 Atoms
Updating coordinates and applying constraints on the GPU.
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
0: rest
Started mdrun on rank 0 Sun Jun 18 17:38:22 2023
Step Time
0 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
5.00875e+03 7.45169e+02 2.44134e+03 7.85915e+03 1.17852e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.09305e+04 -1.54474e+01 1.39640e+01 5.24030e+03 8.25183e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.34921e+04 1.34921e+04 3.05515e+02 -1.06356e+02 0.00000e+00
Step Time
1000 2.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
4.90301e+03 8.16024e+02 2.39591e+03 7.97514e+03 1.17940e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.10068e+04 -1.49212e+01 1.47116e+01 5.20100e+03 8.20113e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.34021e+04 1.33106e+04 3.03638e+02 2.13894e+02 0.00000e+00
Step Time
2000 4.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
5.00717e+03 7.50216e+02 2.40450e+03 8.16778e+03 1.18080e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.10345e+04 -1.50626e+01 1.47815e+01 5.41295e+03 7.93192e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.33449e+04 1.33061e+04 2.93671e+02 3.02563e+02 0.00000e+00
Step Time
3000 6.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
4.99162e+03 8.65363e+02 2.36822e+03 7.97935e+03 1.17988e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.10006e+04 -1.47685e+01 1.48372e+01 5.32205e+03 7.81447e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.31365e+04 1.32971e+04 2.89323e+02 2.21780e+02 0.00000e+00
Step Time
4000 8.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
5.05691e+03 8.13637e+02 2.40639e+03 7.94752e+03 1.17967e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.09705e+04 -1.50602e+01 1.45049e+01 5.37135e+03 7.90642e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.32778e+04 1.32896e+04 2.92727e+02 3.93686e+02 0.00000e+00
step 4200: timed with pme grid 32 32 32, coulomb cutoff 1.000: 411.0 M-cycles
step 4400: timed with pme grid 25 25 25, coulomb cutoff 1.192: 414.4 M-cycles
step 4600: timed with pme grid 20 20 20, coulomb cutoff 1.490: 445.5 M-cycles
step 4600: the maximum allowed grid scaling limits the PME load balancing to a coulomb cut-off of 1.490
step 4800: timed with pme grid 20 20 20, coulomb cutoff 1.490: 342.8 M-cycles
step 5000: timed with pme grid 24 24 24, coulomb cutoff 1.242: 340.9 M-cycles
Step Time
5000 10.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
4.94633e+03 7.83678e+02 2.49225e+03 7.92461e+03 1.17936e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.11438e+04 -6.69381e+00 6.32316e+00 5.12059e+03 7.98037e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.31010e+04 1.32880e+04 2.95465e+02 -1.27191e+02 0.00000e+00
step 5200: timed with pme grid 25 25 25, coulomb cutoff 1.192: 413.0 M-cycles
step 5400: timed with pme grid 28 28 28, coulomb cutoff 1.065: 425.4 M-cycles
step 5600: timed with pme grid 32 32 32, coulomb cutoff 1.000: 437.5 M-cycles
step 5800: timed with pme grid 20 20 20, coulomb cutoff 1.490: 435.6 M-cycles
step 6000: timed with pme grid 24 24 24, coulomb cutoff 1.242: 433.7 M-cycles
optimal pme grid 24 24 24, coulomb cutoff 1.242
Step Time
6000 12.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
4.87547e+03 6.80912e+02 2.52662e+03 8.01510e+03 1.18014e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.10553e+04 -5.23801e+00 5.10132e+00 5.16066e+03 8.10695e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.32676e+04 1.32879e+04 3.00151e+02 -7.85406e+00 0.00000e+00
Step Time
7000 14.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
4.91060e+03 7.46102e+02 2.45581e+03 7.99357e+03 1.18013e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.10524e+04 -5.45146e+00 5.00611e+00 5.17120e+03 8.06282e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.32340e+04 1.32904e+04 2.98518e+02 1.87003e+02 0.00000e+00
Step Time
8000 16.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
5.10349e+03 7.63422e+02 2.36288e+03 8.03221e+03 1.18007e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.10090e+04 -5.49045e+00 5.04623e+00 5.37059e+03 7.99228e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.33629e+04 1.32919e+04 2.95906e+02 1.87096e+02 0.00000e+00
Step Time
9000 18.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
5.03004e+03 6.79532e+02 2.45726e+03 7.94426e+03 1.17989e+02
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
-1.09902e+04 -5.20891e+00 5.17254e+00 5.23883e+03 8.11902e+03
Total Energy Conserved En. Temperature Pressure (bar) Constr. rmsd
1.33579e+04 1.32925e+04 3.00598e+02 1.18884e+02 0.00000e+00
Running with HIPSYCL_RT_MAX_CACHED_NODES=0 HIPSYCL_DEBUG_LEVEL=4
log:
https://we.tl/t-dsBiZ5CJcd
I did multiple tests and sometimes GROMACS works fine but there is no reason for this.
I hope you have more ideas for this, thanks.