GROMACS version: 2021.5
GROMACS modification: No
I have attempted various methods to enhance the simulation performance, but unfortunately, none have yielded positive results. I have included my log below. Would someone be willing to assist me? I would greatly appreciate it.
:-) GROMACS - gmx mdrun, 2021.5 (-:
GROMACS is written by:
Andrey Alekseenko Emile Apol Rossen Apostolov
Paul Bauer Herman J.C. Berendsen Par Bjelkmar
Christian Blau Viacheslav Bolnykh Kevin Boyd
Aldert van Buuren Rudi van Drunen Anton Feenstra
Gilles Gouaillardet Alan Gray Gerrit Groenhof
Anca Hamuraru Vincent Hindriksen M. Eric Irrgang
Aleksei Iupinov Christoph Junghans Joe Jordan
Dimitrios Karkoulis Peter Kasson Jiri Kraus
Carsten Kutzner Per Larsson Justin A. Lemkul
Viveca Lindahl Magnus Lundborg Erik Marklund
Pascal Merz Pieter Meulenhoff Teemu Murtola
Szilard Pall Sander Pronk Roland Schulz
Michael Shirts Alexey Shvetsov Alfons Sijbers
Peter Tieleman Jon Vincent Teemu Virolainen
Christian Wennberg Maarten Wolf Artem Zhmurov
and the project leaders:
Mark Abraham, Berk Hess, Erik Lindahl, and David van der Spoel
Copyright (c) 1991-2000, University of Groningen, The Netherlands.
Copyright (c) 2001-2019, The GROMACS development team at
Uppsala University, Stockholm University and
the Royal Institute of Technology, Sweden.
check out http://www.gromacs.org for more information.
GROMACS is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.
GROMACS: gmx mdrun, version 2021.5
Executable: /cvmfs/soft.ccr.buffalo.edu/versions/2023.01/easybuild/software/avx512/MPI/gcc/11.2.0/openmpi/4.1.1/gromacs/2021.5-CUDA-11.5.1/bin/gmx_mpi
Data prefix: /cvmfs/soft.ccr.buffalo.edu/versions/2023.01/easybuild/software/avx512/MPI/gcc/11.2.0/openmpi/4.1.1/gromacs/2021.5-CUDA-11.5.1
Working dir: /projects/academic/tdgrant/pkoduro/new_gromacs/gromacs_degs1
Process ID: 134079
Command line:
gmx_mpi mdrun -v -deffnm step6.1_equilibration -ntomp 8 -nb gpu -pme gpu -npme 1 -gputasks 0011
GROMACS version: 2021.5
Precision: mixed
Memory model: 64 bit
MPI library: MPI
OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 64)
GPU support: CUDA
SIMD instructions: AVX_512
FFT library: fftw-3.3.10-sse2-avx-avx2-avx2_128
RDTSCP usage: enabled
TNG support: enabled
Hwloc support: disabled
Tracing support: disabled
C compiler: /cvmfs/soft.ccr.buffalo.edu/versions/2023.01/easybuild/software/avx512/Compiler/gcc/11.2.0/openmpi/4.1.1/bin/mpicc GNU 11.2.0
C compiler flags: -mavx512f -mfma -Wno-missing-field-initializers -fexcess-precision=fast -funroll-all-loops -O3 -DNDEBUG
C++ compiler: /cvmfs/soft.ccr.buffalo.edu/versions/2023.01/easybuild/software/avx512/Compiler/gcc/11.2.0/openmpi/4.1.1/bin/mpicxx GNU 11.2.0
C++ compiler flags: -mavx512f -mfma -Wno-missing-field-initializers -fexcess-precision=fast -funroll-all-loops -fopenmp -O3 -DNDEBUG
CUDA compiler: /cvmfs/soft.ccr.buffalo.edu/versions/2023.01/easybuild/software/Core/cuda/11.5.1/bin/nvcc nvcc: NVIDIA (R) Cuda compiler driver;Copyright (c) 2005-2021 NVIDIA Corporation;Built on Thu_Nov_18_09:45:30_PST_2021;Cuda compilation tools, release 11.5, V11.5.119;Build cuda_11.5.r11.5/compiler.30672275_0
CUDA compiler flags:-std=c++17;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-use_fast_math;-D_FORCE_INLINES;-mavx512f -mfma -Wno-missing-field-initializers -fexcess-precision=fast -funroll-all-loops -fopenmp -O3 -DNDEBUG
CUDA driver: 11.40
CUDA runtime: 11.50
Running on 1 node with total 40 cores, 40 logical cores, 2 compatible GPUs
Hardware detected on host cpn-v10-03.compute.cbls.ccr.buffalo.edu (the node of MPI rank 0):
CPU info:
Vendor: Intel
Brand: Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
Family: 6 Model: 85 Stepping: 7
Features: aes apic avx avx2 avx512f avx512cd avx512bw avx512vl avx512secondFMA clfsh cmov cx8 cx16 f16c fma hle htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp rtm sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
Number of AVX-512 FMA units: 2
Hardware topology: Basic
Sockets, cores, and logical processors:
Socket 0: [ 0] [ 4] [ 8] [ 6] [ 2] [ 12] [ 16] [ 18] [ 14] [ 10] [ 20] [ 24] [ 28] [ 26] [ 22] [ 32] [ 36] [ 38] [ 34] [ 30]
Socket 1: [ 1] [ 5] [ 9] [ 7] [ 3] [ 13] [ 17] [ 19] [ 15] [ 11] [ 21] [ 25] [ 29] [ 27] [ 23] [ 33] [ 37] [ 39] [ 35] [ 31]
GPU info:
Number of GPUs detected: 2
#0: NVIDIA Tesla V100-PCIE-32GB, compute cap.: 7.0, ECC: yes, stat: compatible
#1: NVIDIA Tesla V100-PCIE-32GB, compute cap.: 7.0, ECC: yes, stat: compatible
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E.
Lindahl
GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers
SoftwareX 1 (2015) pp. 19-25
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl
Tackling Exascale Software Challenges in Molecular Dynamics Simulations with
GROMACS
In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl
GROMACS 4.5: a high-throughput and highly parallel open source molecular
simulation toolkit
Bioinformatics 29 (2013) pp. 845-54
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- — Thank You — -------- --------
++++ PLEASE CITE THE DOI FOR THIS VERSION OF GROMACS ++++
-------- -------- — Thank You — -------- --------
Input Parameters:
integrator = md
tinit = 0
dt = 0.001
nsteps = 125000
init-step = 0
simulation-part = 1
mts = false
comm-mode = Linear
nstcomm = 100
bd-fric = 0
ld-seed = -134250497
emtol = 10
emstep = 0.01
niter = 20
fcstep = 0
nstcgsteep = 1000
nbfgscorr = 10
rtpi = 0.05
nstxout = 0
nstvout = 100000
nstfout = 100000
nstlog = 1000
nstcalcenergy = 100
nstenergy = 1000
nstxout-compressed = 5000
compressed-x-precision = 1000
cutoff-scheme = Verlet
nstlist = 20
pbc = xyz
periodic-molecules = false
verlet-buffer-tolerance = 0.005
rlist = 1.2
coulombtype = PME
coulomb-modifier = Potential-shift
rcoulomb-switch = 0
rcoulomb = 1.2
epsilon-r = 1
epsilon-rf = inf
vdw-type = Cut-off
vdw-modifier = Force-switch
rvdw-switch = 1
rvdw = 1.2
DispCorr = No
table-extension = 1
fourierspacing = 0.12
fourier-nx = 96
fourier-ny = 96
fourier-nz = 96
pme-order = 4
ewald-rtol = 1e-05
ewald-rtol-lj = 0.001
lj-pme-comb-rule = Geometric
ewald-geometry = 0
epsilon-surface = 0
tcoupl = V-rescale
nsttcouple = 10
nh-chain-length = 0
print-nose-hoover-chain-variables = false
pcoupl = No
pcoupltype = Isotropic
nstpcouple = -1
tau-p = 1
compressibility (3x3):
compressibility[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
compressibility[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
compressibility[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p (3x3):
ref-p[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
refcoord-scaling = No
posres-com (3):
posres-com[0]= 0.00000e+00
posres-com[1]= 0.00000e+00
posres-com[2]= 0.00000e+00
posres-comB (3):
posres-comB[0]= 0.00000e+00
posres-comB[1]= 0.00000e+00
posres-comB[2]= 0.00000e+00
QMMM = false
qm-opts:
ngQM = 0
constraint-algorithm = Lincs
continuation = false
Shake-SOR = false
shake-tol = 0.0001
lincs-order = 4
lincs-iter = 1
lincs-warnangle = 30
nwall = 0
wall-type = 9-3
wall-r-linpot = -1
wall-atomtype[0] = -1
wall-atomtype[1] = -1
wall-density[0] = 0
wall-density[1] = 0
wall-ewald-zfac = 3
pull = false
awh = false
rotation = false
interactiveMD = false
disre = No
disre-weighting = Conservative
disre-mixed = false
dr-fc = 1000
dr-tau = 0
nstdisreout = 100
orire-fc = 0
orire-tau = 0
nstorireout = 100
free-energy = no
cos-acceleration = 0
deform (3x3):
deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
simulated-tempering = false
swapcoords = no
userint1 = 0
userint2 = 0
userint3 = 0
userint4 = 0
userreal1 = 0
userreal2 = 0
userreal3 = 0
userreal4 = 0
applied-forces:
electric-field:
x:
E0 = 0
omega = 0
t0 = 0
sigma = 0
y:
E0 = 0
omega = 0
t0 = 0
sigma = 0
z:
E0 = 0
omega = 0
t0 = 0
sigma = 0
density-guided-simulation:
active = false
group = protein
similarity-measure = inner-product
atom-spreading-weight = unity
force-constant = 1e+09
gaussian-transform-spreading-width = 0.2
gaussian-transform-spreading-range-in-multiples-of-width = 4
reference-density-filename = reference.mrc
nst = 1
normalize-densities = true
adaptive-force-scaling = false
adaptive-force-scaling-time-constant = 4
shift-vector =
transformation-matrix =
grpopts:
nrdf: 13298.7 122492 149364
ref-t: 303.15 303.15 303.15
tau-t: 1 1 1
annealing: No No No
annealing-npoints: 0 0 0
acc: 0 0 0
nfreeze: N N N
energygrp-flags[ 0]: 0
Changing nstlist from 20 to 100, rlist from 1.2 to 1.261
Initializing Domain Decomposition on 4 ranks
Dynamic load balancing: auto
Using update groups, nr 47714, average size 2.7 atoms, max. radius 0.139 nm
Minimum cell size due to atom displacement: 0.421 nm
Initial maximum distances in bonded interactions:
two-body bonded interactions: 0.425 nm, LJ-14, atoms 34254 34263
multi-body bonded interactions: 0.489 nm, CMAP Dih., atoms 5017 5030
Minimum cell size due to bonded interactions: 0.538 nm
Scaling the initial minimum size with 1/0.8 (option -dds) = 1.25
Using 1 separate PME ranks
Optimizing the DD grid for 3 cells with a minimum initial size of 0.672 nm
The maximum allowed number of cells is: X 16 Y 16 Z 15
Domain decomposition grid 3 x 1 x 1, separate PME ranks 1
PME domain decomposition: 1 x 1 x 1
Interleaving PP and PME ranks
This rank does only particle-particle work.
Domain decomposition rank 0, coordinates 0 0 0
The initial number of communication pulses is: X 1
The initial domain decomposition cell size is: X 3.79 nm
The maximum allowed distance for atom groups involved in interactions is:
non-bonded interactions 1.539 nm
two-body bonded interactions (-rdd) 1.539 nm
multi-body bonded interactions (-rdd) 1.539 nm
When dynamic load balancing gets turned on, these settings will change to:
The maximum number of communication pulses is: X 1
The minimum size for domain decomposition cells is 1.539 nm
The requested allowed shrink of DD cells (option -dds) is: 0.80
The allowed shrink of domain decomposition cells is: X 0.41
The maximum allowed distance for atom groups involved in interactions is:
non-bonded interactions 1.539 nm
two-body bonded interactions (-rdd) 1.539 nm
multi-body bonded interactions (-rdd) 1.539 nm
On host cpn-v10-03.compute.cbls.ccr.buffalo.edu 2 GPUs selected for this run.
Mapping of GPU IDs to the 4 GPU tasks in the 4 ranks on this node:
PP:0,PP:0,PP:1,PME:1
PP tasks will do (non-perturbed) short-ranged interactions on the GPU
PP task will update and constrain coordinates on the CPU
PME tasks will do all aspects on the GPU
NOTE: You assigned the same GPU ID(s) to multiple ranks, which is a good idea if you have measured the performance of alternatives.
Using 4 MPI processes
Non-default thread affinity set, disabling internal thread affinity
Using 8 OpenMP threads per MPI process
System total charge: 0.000
Will do PME sum in reciprocal space for electrostatic interactions.
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- — Thank You — -------- --------
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Potential shift: LJ r^-12: -2.648e-01 r^-6: -5.349e-01, Ewald -8.333e-06
Initialized non-bonded Ewald tables, spacing: 1.02e-03 size: 1176
Generated table with 1130 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1130 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1130 data points for 1-4 LJ12.
Tabscale = 500 points/nm
Using GPU 8x8 nonbonded short-range kernels
Using a dual 8x8 pair-list setup updated with dynamic, rolling pruning:
outer list: updated every 100 steps, buffer 0.061 nm, rlist 1.261 nm
inner list: updated every 38 steps, buffer 0.001 nm, rlist 1.201 nm
At tolerance 0.005 kJ/mol/ps per atom, equivalent classical 1x1 list would be:
outer list: updated every 100 steps, buffer 0.197 nm, rlist 1.397 nm
inner list: updated every 38 steps, buffer 0.077 nm, rlist 1.277 nm
Removing pbc first time
Initializing LINear Constraint Solver
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and H. Bekker and H. J. C. Berendsen and J. G. E. M. Fraaije
LINCS: A Linear Constraint Solver for molecular simulations
J. Comp. Chem. 18 (1997) pp. 1463-1472
-------- -------- — Thank You — -------- --------
The number of constraints is 33841
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- — Thank You — -------- --------
Linking all bonded interactions to atoms
Intra-simulation communication will occur every 10 steps.
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
G. Bussi, D. Donadio and M. Parrinello
Canonical sampling through velocity rescaling
J. Chem. Phys. 126 (2007) pp. 014101
-------- -------- — Thank You — -------- --------
There are: 131113 Atoms
Atom distribution over 3 domains: av 43704 stddev 649 min 42836 max 44292
NOTE: DLB will not turn on during the first phase of PME tuning
Constraining the starting coordinates (step 0)
Constraining the coordinates at t0-dt (step 0)
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
0: SOLU_MEMB
1: SOLV
RMS relative constraint deviation after constraining: 1.99e-06
Initial temperature: 302.649 K
Started mdrun on rank 0 Thu Jun 15 15:39:16 2023
Energy conservation over simulation part #1 of length 125 ns, time 0 to 125 ns
Conserved energy drift: 1.74e-04 kJ/mol/ps per atom
<====== ############### ==>
<==== A V E R A G E S ====>
<== ############### ======>
Statistics over 125001 steps using 1251 frames
Energies (kJ/mol)
Bond U-B Proper Dih. Improper Dih. CMAP Dih.
2.76098e+04 1.36198e+05 1.01719e+05 1.52593e+03 -9.28820e+01
LJ-14 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip.
2.04226e+04 1.65712e+05 2.09739e+04 -1.59034e+06 7.23204e+03
Position Rest. Dih. Rest. Potential Kinetic En. Total Energy
2.83604e+03 8.38407e+02 -1.10537e+06 3.57318e+05 -7.48050e+05
Conserved En. Temperature Pressure (bar) Constr. rmsd
-1.00672e+06 3.01419e+02 -7.33768e+02 0.00000e+00
Total Virial (kJ/mol)
1.45085e+05 -9.61927e+01 -5.40617e+02
-9.67665e+01 1.45493e+05 -4.06045e+02
-5.33296e+02 -3.97303e+02 1.58705e+05
Pressure (bar)
-6.62188e+02 2.69532e+00 1.18316e+01
2.70906e+00 -6.70220e+02 9.10453e+00
1.16564e+01 8.89527e+00 -8.68896e+02
T-SOLU T-MEMB T-SOLV
3.01045e+02 3.01726e+02 3.01199e+02
M E G A - F L O P S A C C O U N T I N G
NB=Group-cutoff nonbonded kernels NxN=N-by-N cluster Verlet kernels
RF=Reaction-Field VdW=Van der Waals QSTab=quadratic-spline table
W3=SPC/TIP3p W4=TIP4p (single or pairs)
V&F=Potential and force V=Potential only F=Force only
Computing: M-Number M-Flops % Flops
Pair Search distance check 18271.141632 164440.275 0.0
NxN QSTab Elec. + LJ [F] 18022793.272704 955208043.453 97.3
NxN QSTab Elec. + LJ [V&F] 182195.185920 14757810.060 1.5
1,4 nonbonded interactions 18992.276937 1709304.924 0.2
Reset In Box 164.022363 492.067 0.0
CG-CoM 164.153476 492.460 0.0
Bonds 2819.897559 166373.956 0.0
Propers 22823.057583 5226480.187 0.5
Impropers 191.626533 39858.319 0.0
Dihedral Restr. 129.251034 25850.207 0.0
Pos. Restr. 385.503084 19275.154 0.0
Virial 164.191248 2955.442 0.0
Stop-CM 164.153476 1641.535 0.0
Calc-Ekin 3278.087226 88508.355 0.0
Lincs 4230.226523 253813.591 0.0
Lincs-Mat 26981.147532 107924.590 0.0
Constraint-V 17752.659038 159773.931 0.0
Constraint-Vir 135.330678 3247.936 0.0
Settle 3097.449337 1146056.255 0.1
CMAP 40.125321 68213.046 0.0
Urey-Bradley 13485.357882 2467820.492 0.3
Total 981618376.236 100.0
D O M A I N D E C O M P O S I T I O N S T A T I S T I C S
av. #atoms communicated per step for force: 2 x 39050.7
Dynamic load balancing report:
DLB was off during the run due to low measured imbalance.
Average load imbalance: 4.3%.
The balanceable part of the MD step is 72%, load imbalance is computed from this.
Part of the total run time spent waiting due to load imbalance: 3.1%.
Average PME mesh/force load: 1.093
Part of the total run time spent waiting due to PP/PME imbalance: 3.2 %
R E A L C Y C L E A N D T I M E A C C O U N T I N G
On 3 MPI ranks doing PP, each using 8 OpenMP threads, and
on 1 MPI rank doing PME, using 8 OpenMP threads
Computing: Num Num Call Wall time Giga-Cycles
Ranks Threads Count (s) total sum %
Domain decomp. 3 8 1251 20.212 1016.205 5.4
DD comm. load 3 8 1233 0.039 1.981 0.0
Send X to PME 3 8 125001 38.286 1924.876 10.2
Neighbor search 3 8 1251 5.424 272.679 1.4
Launch GPU ops. 3 8 250002 8.367 420.687 2.2
Comm. coord. 3 8 123750 17.310 870.305 4.6
Force 3 8 125001 65.808 3308.620 17.6
Wait + Comm. F 3 8 125001 24.261 1219.768 6.5
PME mesh * 1 8 125001 135.307 2267.590 12.1
PME wait for PP * 145.266 2434.490 12.9
Wait + Recv. PME F 3 8 125001 36.972 1858.844 9.9
Wait PME GPU gather 3 8 125001 43.440 2184.008 11.6
Wait GPU NB nonloc. 3 8 125001 25.717 1292.961 6.9
Wait GPU NB local 3 8 125001 0.776 39.023 0.2
NB X/F buffer ops. 3 8 497502 7.843 394.294 2.1
Write traj. 3 8 26 0.226 11.350 0.1
Update 3 8 125001 3.905 196.338 1.0
Constraints 3 8 125003 22.743 1143.425 6.1
Comm. energies 3 8 12501 1.008 50.655 0.3
Total 280.596 18809.876 100.0
(*) Note that with separate PME ranks, the walltime column actually sums to
twice the total reported, but the cycle count total and % are correct.
Core t (s) Wall t (s) (%)
Time: 8978.804 280.596 3199.9
(ns/day) (hour/ns)
Performance: 38.490 0.624
Finished mdrun on rank 0 Thu Jun 15 15:43:57 2023