:-) GROMACS - gmx mdrun, 2020.3 (-:
GROMACS is written by:
Emile Apol Rossen Apostolov Paul Bauer Herman J.C. Berendsen
Par Bjelkmar Christian Blau Viacheslav Bolnykh Kevin Boyd
Aldert van Buuren Rudi van Drunen Anton Feenstra Alan Gray
Gerrit Groenhof Anca Hamuraru Vincent Hindriksen M. Eric Irrgang
Aleksei Iupinov Christoph Junghans Joe Jordan Dimitrios Karkoulis
Peter Kasson Jiri Kraus Carsten Kutzner Per Larsson
Justin A. Lemkul Viveca Lindahl Magnus Lundborg Erik Marklund
Pascal Merz Pieter Meulenhoff Teemu Murtola Szilard Pall
Sander Pronk Roland Schulz Michael Shirts Alexey Shvetsov
Alfons Sijbers Peter Tieleman Jon Vincent Teemu Virolainen
Christian Wennberg Maarten Wolf Artem Zhmurov
and the project leaders:
Mark Abraham, Berk Hess, Erik Lindahl, and David van der Spoel
Copyright (c) 1991-2000, University of Groningen, The Netherlands.
Copyright (c) 2001-2019, The GROMACS development team at
Uppsala University, Stockholm University and
the Royal Institute of Technology, Sweden.
check out http://www.gromacs.org for more information.
GROMACS is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.
GROMACS: gmx mdrun, version 2020.3
Executable: /usr/local/bin/gmx
Data prefix: /usr/local
Working dir: /mnt/e/WKMD
Process ID: 83
Command line:
gmx mdrun -v -deffnm em
GROMACS version: 2020.3
Verified release checksum is c0599e547549c2d0ef4fc678dc5a26ad0000eab045e938fed756f9ff5b99a197
Precision: single
Memory model: 64 bit
MPI library: thread_mpi
OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 64)
GPU support: disabled
SIMD instructions: AVX2_256
FFT library: fftw-3.3.8-sse2-avx-avx2-avx2_128
RDTSCP usage: enabled
TNG support: enabled
Hwloc support: disabled
Tracing support: disabled
C compiler: /usr/bin/cc GNU 9.3.0
C compiler flags: -mavx2 -mfma -fexcess-precision=fast -funroll-all-loops -O3 -DNDEBUG
C++ compiler: /usr/bin/c++ GNU 9.3.0
C++ compiler flags: -mavx2 -mfma -fexcess-precision=fast -funroll-all-loops -fopenmp
Running on 1 node with total 12 cores, 12 logical cores
Hardware detected:
CPU info:
Vendor: Intel
Brand: Intel(R) Core™ i7-9750H CPU @ 2.60GHz
Family: 6 Model: 158 Stepping: 10
Features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
Hardware topology: Only logical processor count
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E.
Lindahl
GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers
SoftwareX 1 (2015) pp. 19-25
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl
Tackling Exascale Software Challenges in Molecular Dynamics Simulations with
GROMACS
In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl
GROMACS 4.5: a high-throughput and highly parallel open source molecular
simulation toolkit
Bioinformatics 29 (2013) pp. 845-54
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- — Thank You — -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- — Thank You — -------- --------
++++ PLEASE CITE THE DOI FOR THIS VERSION OF GROMACS ++++
-------- -------- — Thank You — -------- --------
Input Parameters:
integrator = steep
tinit = 0
dt = 0.001
nsteps = 50000
init-step = 0
simulation-part = 1
comm-mode = Linear
nstcomm = 100
bd-fric = 0
ld-seed = 1278885625
emtol = 1000
emstep = 0.01
niter = 20
fcstep = 0
nstcgsteep = 1000
nbfgscorr = 10
rtpi = 0.05
nstxout = 0
nstvout = 0
nstfout = 0
nstlog = 1000
nstcalcenergy = 100
nstenergy = 1000
nstxout-compressed = 0
compressed-x-precision = 1000
cutoff-scheme = Verlet
nstlist = 10
pbc = xyz
periodic-molecules = false
verlet-buffer-tolerance = 0.005
rlist = 1.26
coulombtype = PME
coulomb-modifier = Potential-shift
rcoulomb-switch = 0
rcoulomb = 1.2
epsilon-r = 1
epsilon-rf = inf
vdw-type = Cut-off
vdw-modifier = Force-switch
rvdw-switch = 1
rvdw = 1.2
DispCorr = No
table-extension = 1
fourierspacing = 0.12
fourier-nx = 96
fourier-ny = 96
fourier-nz = 96
pme-order = 4
ewald-rtol = 1e-05
ewald-rtol-lj = 0.001
lj-pme-comb-rule = Geometric
ewald-geometry = 0
epsilon-surface = 0
tcoupl = No
nsttcouple = -1
nh-chain-length = 0
print-nose-hoover-chain-variables = false
pcoupl = No
pcoupltype = Isotropic
nstpcouple = -1
tau-p = 1
compressibility (3x3):
compressibility[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
compressibility[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
compressibility[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p (3x3):
ref-p[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
refcoord-scaling = No
posres-com (3):
posres-com[0]= 0.00000e+00
posres-com[1]= 0.00000e+00
posres-com[2]= 0.00000e+00
posres-comB (3):
posres-comB[0]= 0.00000e+00
posres-comB[1]= 0.00000e+00
posres-comB[2]= 0.00000e+00
QMMM = false
QMconstraints = 0
QMMMscheme = 0
MMChargeScaleFactor = 1
qm-opts:
ngQM = 0
constraint-algorithm = Lincs
continuation = false
Shake-SOR = false
shake-tol = 0.0001
lincs-order = 4
lincs-iter = 1
lincs-warnangle = 30
nwall = 0
wall-type = 9-3
wall-r-linpot = -1
wall-atomtype[0] = -1
wall-atomtype[1] = -1
wall-density[0] = 0
wall-density[1] = 0
wall-ewald-zfac = 3
pull = false
awh = false
rotation = false
interactiveMD = false
disre = No
disre-weighting = Conservative
disre-mixed = false
dr-fc = 1000
dr-tau = 0
nstdisreout = 100
orire-fc = 0
orire-tau = 0
nstorireout = 100
free-energy = no
cos-acceleration = 0
deform (3x3):
deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
simulated-tempering = false
swapcoords = no
userint1 = 0
userint2 = 0
userint3 = 0
userint4 = 0
userreal1 = 0
userreal2 = 0
userreal3 = 0
userreal4 = 0
applied-forces:
electric-field:
x:
E0 = 0
omega = 0
t0 = 0
sigma = 0
y:
E0 = 0
omega = 0
t0 = 0
sigma = 0
z:
E0 = 0
omega = 0
t0 = 0
sigma = 0
density-guided-simulation:
active = false
group = protein
similarity-measure = inner-product
atom-spreading-weight = unity
force-constant = 1e+09
gaussian-transform-spreading-width = 0.2
gaussian-transform-spreading-range-in-multiples-of-width = 4
reference-density-filename = reference.mrc
nst = 1
normalize-densities = true
adaptive-force-scaling = false
adaptive-force-scaling-time-constant = 4
grpopts:
nrdf: 200826
ref-t: 0
tau-t: 0
annealing: No
annealing-npoints: 0
acc: 0 0 0
nfreeze: N N N
energygrp-flags[ 0]: 0
Using 1 MPI thread
Non-default thread affinity set, disabling internal thread affinity
Using 12 OpenMP threads
System total charge: 0.000
Will do PME sum in reciprocal space for electrostatic interactions.
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- — Thank You — -------- --------
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Potential shift: LJ r^-12: -2.648e-01 r^-6: -5.349e-01, Ewald -8.333e-06
Initialized non-bonded Ewald tables, spacing: 1.02e-03 size: 1176
Generated table with 1130 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1130 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1130 data points for 1-4 LJ12.
Tabscale = 500 points/nm
Using SIMD 4x8 nonbonded short-range kernels
Using a 4x8 pair-list setup:
updated every 10 steps, buffer 0.060 nm, rlist 1.260 nm
Removing pbc first time
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- — Thank You — -------- --------