LINCS warnings

GROMACS version: 2020.3
GROMACS modification: No

I’ve been trying to heat up 4 polystyrene chains from 300K up to 1200K with a series of NVT simulations that have “continuation=yes” and a .cpt file from the previous NVT grompped in, but I always encounter an error with LINCS. Over my several attempts, the error shows up usually after my NVT at 600K. I tried to work through it by not including a .cpt file from the previous NVT, setting continuation=no, and “gen_v=yes” to run each NVT separately as I heat up my system. Suffice it to say, I keep experiencing a LINCS error. Can anyone help?

Here’s one of my log files:

> GROMACS:      gmx mdrun, version 2020.3
> Executable:   /usr/local/gromacs/bin/gmx
> Data prefix:  /usr/local/gromacs
> Working dir:  /Users/profile1/Desktop/gromacs-related_work/NPs_BBB/PS/PSNP/PSNP4
> Process ID:   13756
> Command line:
>   gmx mdrun -deffnm nvt1100 -v -nt 1 -pin on
> 
> GROMACS version:    2020.3
> Verified release checksum is c0599e547549c2d0ef4fc678dc5a26ad0000eab045e938fed756f9ff5b99a197
> Precision:          single
> Memory model:       64 bit
> MPI library:        thread_mpi
> OpenMP support:     enabled (GMX_OPENMP_MAX_THREADS = 64)
> GPU support:        OpenCL
> SIMD instructions:  AVX2_256
> FFT library:        fftw-3.3.8-sse2
> RDTSCP usage:       enabled
> TNG support:        enabled
> Hwloc support:      disabled
> Tracing support:    disabled
> C compiler:         /usr/local/bin/icc Intel 19.1.2.20200623
> C compiler flags:   -march=core-avx2 -std=gnu99 -ip -funroll-all-loops -alias-const -ansi-alias -no-prec-div -fimf-domain-exclusion=14 -qoverride-limits -O3 -DNDEBUG
> C++ compiler:       /usr/local/bin/icpc Intel 19.1.2.20200623
> C++ compiler flags: -march=core-avx2 -ip -funroll-all-loops -alias-const -ansi-alias -no-prec-div -fimf-domain-exclusion=14 -qoverride-limits -qopenmp -O3 -DNDEBUG
> OpenCL include dir: /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk/System/Library/Frameworks/OpenCL.framework
> OpenCL library:     /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk/System/Library/Frameworks/OpenCL.framework
> OpenCL version:     1.2
> 
> 
> Running on 1 node with total 4 cores, 4 logical cores, 0 compatible GPUs
> Hardware detected:
>   CPU info:
>     Vendor: Intel
>     Brand:  Intel(R) Core(TM) i5-4570R CPU @ 2.70GHz
>     Family: 6   Model: 70   Stepping: 1
>     Features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
>   Hardware topology: Only logical processor count
>   GPU info:
>     Number of GPUs detected: 1
>     #0: name: Iris Pro, vendor: Intel, device version: OpenCL 1.2 , stat: incompatible (please recompile with GMX_OPENCL_NB_CLUSTER_SIZE=4)
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E.
> Lindahl
> GROMACS: High performance molecular simulations through multi-level
> parallelism from laptops to supercomputers
> SoftwareX 1 (2015) pp. 19-25
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl
> Tackling Exascale Software Challenges in Molecular Dynamics Simulations with
> GROMACS
> In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
> Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl
> GROMACS 4.5: a high-throughput and highly parallel open source molecular
> simulation toolkit
> Bioinformatics 29 (2013) pp. 845-54
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
> GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
> molecular simulation
> J. Chem. Theory Comput. 4 (2008) pp. 435-447
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
> Berendsen
> GROMACS: Fast, Flexible and Free
> J. Comp. Chem. 26 (2005) pp. 1701-1719
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> E. Lindahl and B. Hess and D. van der Spoel
> GROMACS 3.0: A package for molecular simulation and trajectory analysis
> J. Mol. Mod. 7 (2001) pp. 306-317
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> H. J. C. Berendsen, D. van der Spoel and R. van Drunen
> GROMACS: A message-passing parallel molecular dynamics implementation
> Comp. Phys. Comm. 91 (1995) pp. 43-56
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE CITE THE DOI FOR THIS VERSION OF GROMACS ++++
> https://doi.org/10.5281/zenodo.3923645
> -------- -------- --- Thank You --- -------- --------
> 
> Input Parameters:
>    integrator                     = md
>    tinit                          = 0
>    dt                             = 0.025
>    nsteps                         = 80000
>    init-step                      = 0
>    simulation-part                = 1
>    comm-mode                      = Linear
>    nstcomm                        = 100
>    bd-fric                        = 0
>    ld-seed                        = -201697359
>    emtol                          = 10
>    emstep                         = 0.01
>    niter                          = 20
>    fcstep                         = 0
>    nstcgsteep                     = 1000
>    nbfgscorr                      = 10
>    rtpi                           = 0.05
>    nstxout                        = 0
>    nstvout                        = 0
>    nstfout                        = 0
>    nstlog                         = 1000
>    nstcalcenergy                  = 100
>    nstenergy                      = 100
>    nstxout-compressed             = 1000
>    compressed-x-precision         = 100
>    cutoff-scheme                  = Verlet
>    nstlist                        = 15
>    pbc                            = xyz
>    periodic-molecules             = false
>    verlet-buffer-tolerance        = 0.005
>    rlist                          = 1.14
>    coulombtype                    = Reaction-Field
>    coulomb-modifier               = Potential-shift
>    rcoulomb-switch                = 0
>    rcoulomb                       = 1.1
>    epsilon-r                      = 15
>    epsilon-rf                     = inf
>    vdw-type                       = Cut-off
>    vdw-modifier                   = Potential-shift
>    rvdw-switch                    = 0
>    rvdw                           = 1.1
>    DispCorr                       = No
>    table-extension                = 1
>    fourierspacing                 = 0.12
>    fourier-nx                     = 0
>    fourier-ny                     = 0
>    fourier-nz                     = 0
>    pme-order                      = 4
>    ewald-rtol                     = 1e-05
>    ewald-rtol-lj                  = 0.001
>    lj-pme-comb-rule               = Geometric
>    ewald-geometry                 = 0
>    epsilon-surface                = 0
>    tcoupl                         = Nose-Hoover
>    nsttcouple                     = 15
>    nh-chain-length                = 1
>    print-nose-hoover-chain-variables = false
>    pcoupl                         = No
>    pcoupltype                     = Isotropic
>    nstpcouple                     = -1
>    tau-p                          = 1
>    compressibility (3x3):
>       compressibility[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       compressibility[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       compressibility[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>    ref-p (3x3):
>       ref-p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       ref-p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       ref-p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>    refcoord-scaling               = No
>    posres-com (3):
>       posres-com[0]= 0.00000e+00
>       posres-com[1]= 0.00000e+00
>       posres-com[2]= 0.00000e+00
>    posres-comB (3):
>       posres-comB[0]= 0.00000e+00
>       posres-comB[1]= 0.00000e+00
>       posres-comB[2]= 0.00000e+00
>    QMMM                           = false
>    QMconstraints                  = 0
>    QMMMscheme                     = 0
>    MMChargeScaleFactor            = 1
> qm-opts:
>    ngQM                           = 0
>    constraint-algorithm           = Lincs
>    continuation                   = false
>    Shake-SOR                      = false
>    shake-tol                      = 0.0001
>    lincs-order                    = 4
>    lincs-iter                     = 1
>    lincs-warnangle                = 30
>    nwall                          = 0
>    wall-type                      = 9-3
>    wall-r-linpot                  = -1
>    wall-atomtype[0]               = -1
>    wall-atomtype[1]               = -1
>    wall-density[0]                = 0
>    wall-density[1]                = 0
>    wall-ewald-zfac                = 3
>    pull                           = false
>    awh                            = false
>    rotation                       = false
>    interactiveMD                  = false
>    disre                          = No
>    disre-weighting                = Conservative
>    disre-mixed                    = false
>    dr-fc                          = 1000
>    dr-tau                         = 0
>    nstdisreout                    = 100
>    orire-fc                       = 0
>    orire-tau                      = 0
>    nstorireout                    = 100
>    free-energy                    = no
>    cos-acceleration               = 0
>    deform (3x3):
>       deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>    simulated-tempering            = false
>    swapcoords                     = no
>    userint1                       = 0
>    userint2                       = 0
>    userint3                       = 0
>    userint4                       = 0
>    userreal1                      = 0
>    userreal2                      = 0
>    userreal3                      = 0
>    userreal4                      = 0
>    applied-forces:
>      electric-field:
>        x:
>          E0                       = 0
>          omega                    = 0
>          t0                       = 0
>          sigma                    = 0
>        y:
>          E0                       = 0
>          omega                    = 0
>          t0                       = 0
>          sigma                    = 0
>        z:
>          E0                       = 0
>          omega                    = 0
>          t0                       = 0
>          sigma                    = 0
>      density-guided-simulation:
>        active                     = false
>        group                      = protein
>        similarity-measure         = inner-product
>        atom-spreading-weight      = unity
>        force-constant             = 1e+09
>        gaussian-transform-spreading-width = 0.2
>        gaussian-transform-spreading-range-in-multiples-of-width = 4
>        reference-density-filename = reference.mrc
>        nst                        = 1
>        normalize-densities        = true
>        adaptive-force-scaling     = false
>        adaptive-force-scaling-time-constant = 4
> grpopts:
>    nrdf:        3597
>    ref-t:        1100
>    tau-t:         7.5
> annealing:          No
> annealing-npoints:           0
>    acc:	           0           0           0
>    nfreeze:           N           N           N
>    energygrp-flags[  0]: 0
> 
> Changing nstlist from 15 to 25, rlist from 1.14 to 1.288
> 
> Using 1 MPI thread
> Using 1 OpenMP thread 
> 
> System total charge: 0.000
> Reaction-Field:
> epsRF = 0, rc = 1.1, krf = 0.375657, crf = 1.36364, epsfac = 9.26236
> The electrostatics potential has its minimum at r = 1.1
> Potential shift: LJ r^-12: -3.186e-01 r^-6: -5.645e-01
> 
> Using SIMD 4x8 nonbonded short-range kernels
> 
> Using a dual 4x8 pair-list setup updated with dynamic pruning:
>   outer list: updated every 25 steps, buffer 0.188 nm, rlist 1.288 nm
>   inner list: updated every 12 steps, buffer 0.004 nm, rlist 1.104 nm
> At tolerance 0.005 kJ/mol/ps per atom, equivalent classical 1x1 list would be:
>   outer list: updated every 25 steps, buffer 0.309 nm, rlist 1.409 nm
>   inner list: updated every 12 steps, buffer 0.038 nm, rlist 1.138 nm
> 
> Using full Lennard-Jones parameter combination matrix
> 
> Removing pbc first time
> 
> Initializing LINear Constraint Solver
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> B. Hess
> P-LINCS: A Parallel Linear Constraint Solver for molecular simulation
> J. Chem. Theory Comput. 4 (2008) pp. 116-122
> -------- -------- --- Thank You --- -------- --------
> 
> The number of constraints is 1200
> 1200 constraints are involved in constraint triangles,
> will apply an additional matrix expansion of order 4 for couplings
> between constraints inside triangles
> There are: 1600 Atoms
> 
> Constraining the starting coordinates (step 0)
> 
> Constraining the coordinates at t0-dt (step 0)
> Center of mass motion removal mode is Linear
> We have the following groups for center of mass motion removal:
>   0:  rest
> RMS relative constraint deviation after constraining: 7.39e-05
> Initial temperature: 1107.37 K
> 
> Started mdrun on rank 0 Sat Sep  5 22:22:27 2020
> 
>            Step           Time
>               0        0.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.28960e+03    8.66453e+03   -1.53340e+04    0.00000e+00   -3.37990e+03
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.75872e+04    1.42073e+04    1.42073e+04    1.17612e+03    4.25599e+00
>    Constr. rmsd
>     8.12963e-05
> 
>            Step           Time
>            1000       25.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.66045e+03    8.90748e+03   -1.38989e+04    0.00000e+00   -1.33095e+03
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.59711e+04    1.46402e+04    1.57249e+04    1.06805e+03   -8.33768e-01
>    Constr. rmsd
>     6.50159e-05
> 
>            Step           Time
>            2000       50.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.82262e+03    9.45960e+03   -1.41411e+04    0.00000e+00   -8.58900e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.64603e+04    1.56014e+04    1.65575e+04    1.10076e+03   -2.60957e-01
>    Constr. rmsd
>     7.25666e-05
> 
>            Step           Time
>            3000       75.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.56032e+03    9.10781e+03   -1.34891e+04    0.00000e+00   -8.20996e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.58069e+04    1.49860e+04    1.79927e+04    1.05707e+03    2.79133e-01
>    Constr. rmsd
>     6.68478e-05
> 
>            Step           Time
>            4000      100.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.74427e+03    9.34828e+03   -1.36906e+04    0.00000e+00   -5.98027e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.67469e+04    1.61489e+04    1.94894e+04    1.11993e+03    2.93788e+00
>    Constr. rmsd
>     7.30774e-05
> 
>            Step           Time
>            5000      125.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.81480e+03    9.13224e+03   -1.37587e+04    0.00000e+00   -8.11626e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.67623e+04    1.59507e+04    2.07879e+04    1.12096e+03   -2.00317e+00
>    Constr. rmsd
>     6.81476e-05
> 
>            Step           Time
>            6000      150.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.46302e+03    9.35158e+03   -1.44799e+04    0.00000e+00   -1.66528e+03
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.75189e+04    1.58536e+04    2.24366e+04    1.17155e+03    1.42028e+00
>    Constr. rmsd
>     8.72229e-05
> 
>            Step           Time
>            7000      175.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.75645e+03    9.79785e+03   -1.38365e+04    0.00000e+00   -2.82240e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.84950e+04    1.82128e+04    2.35599e+04    1.23683e+03   -6.79238e-01
>    Constr. rmsd
>     9.62320e-05
> 
> Constraint error in algorithm Lincs at step 7550
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7551
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7552
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7553
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7554
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7555
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7556
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7557
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7558
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7559
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 7560
> Wrote pdb files with previous and current coordinates
> 
> -------------------------------------------------------
> Program:     gmx mdrun, version 2020.3
> Source file: src/gromacs/mdlib/constr.cpp (line 224)
> 
> Fatal error:
> Too many LINCS warnings (1000)
> If you know what you are doing you can adjust the lincs warning threshold in
> your mdp file
> or set the environment variable GMX_MAXCONSTRWARN to -1,
> but normally it is better to fix the problem
> 
> For more information and tips for troubleshooting, please check the GROMACS
> website at http://www.gromacs.org/Documentation/Errors
> -------------------------------------------------------

Thank you!

Here’s another .log file with a slightly different error:

> GROMACS:      gmx mdrun, version 2020.3
> Executable:   /usr/local/gromacs/bin/gmx
> Data prefix:  /usr/local/gromacs
> Working dir:  /Users/profile1/Desktop/gromacs-related_work/NPs_BBB/PS/PSNP/PSNP5
> Process ID:   13767
> Command line:
>   gmx mdrun -deffnm nvt1100 -v -nt 1
> 
> GROMACS version:    2020.3
> Verified release checksum is c0599e547549c2d0ef4fc678dc5a26ad0000eab045e938fed756f9ff5b99a197
> Precision:          single
> Memory model:       64 bit
> MPI library:        thread_mpi
> OpenMP support:     enabled (GMX_OPENMP_MAX_THREADS = 64)
> GPU support:        OpenCL
> SIMD instructions:  AVX2_256
> FFT library:        fftw-3.3.8-sse2
> RDTSCP usage:       enabled
> TNG support:        enabled
> Hwloc support:      disabled
> Tracing support:    disabled
> C compiler:         /usr/local/bin/icc Intel 19.1.2.20200623
> C compiler flags:   -march=core-avx2 -std=gnu99 -ip -funroll-all-loops -alias-const -ansi-alias -no-prec-div -fimf-domain-exclusion=14 -qoverride-limits -O3 -DNDEBUG
> C++ compiler:       /usr/local/bin/icpc Intel 19.1.2.20200623
> C++ compiler flags: -march=core-avx2 -ip -funroll-all-loops -alias-const -ansi-alias -no-prec-div -fimf-domain-exclusion=14 -qoverride-limits -qopenmp -O3 -DNDEBUG
> OpenCL include dir: /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk/System/Library/Frameworks/OpenCL.framework
> OpenCL library:     /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk/System/Library/Frameworks/OpenCL.framework
> OpenCL version:     1.2
> 
> 
> Running on 1 node with total 4 cores, 4 logical cores, 0 compatible GPUs
> Hardware detected:
>   CPU info:
>     Vendor: Intel
>     Brand:  Intel(R) Core(TM) i5-4570R CPU @ 2.70GHz
>     Family: 6   Model: 70   Stepping: 1
>     Features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
>   Hardware topology: Only logical processor count
>   GPU info:
>     Number of GPUs detected: 1
>     #0: name: Iris Pro, vendor: Intel, device version: OpenCL 1.2 , stat: incompatible (please recompile with GMX_OPENCL_NB_CLUSTER_SIZE=4)
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E.
> Lindahl
> GROMACS: High performance molecular simulations through multi-level
> parallelism from laptops to supercomputers
> SoftwareX 1 (2015) pp. 19-25
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl
> Tackling Exascale Software Challenges in Molecular Dynamics Simulations with
> GROMACS
> In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
> Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl
> GROMACS 4.5: a high-throughput and highly parallel open source molecular
> simulation toolkit
> Bioinformatics 29 (2013) pp. 845-54
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
> GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
> molecular simulation
> J. Chem. Theory Comput. 4 (2008) pp. 435-447
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
> Berendsen
> GROMACS: Fast, Flexible and Free
> J. Comp. Chem. 26 (2005) pp. 1701-1719
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> E. Lindahl and B. Hess and D. van der Spoel
> GROMACS 3.0: A package for molecular simulation and trajectory analysis
> J. Mol. Mod. 7 (2001) pp. 306-317
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> H. J. C. Berendsen, D. van der Spoel and R. van Drunen
> GROMACS: A message-passing parallel molecular dynamics implementation
> Comp. Phys. Comm. 91 (1995) pp. 43-56
> -------- -------- --- Thank You --- -------- --------
> 
> 
> ++++ PLEASE CITE THE DOI FOR THIS VERSION OF GROMACS ++++
> https://doi.org/10.5281/zenodo.3923645
> -------- -------- --- Thank You --- -------- --------
> 
> Input Parameters:
>    integrator                     = md
>    tinit                          = 0
>    dt                             = 0.025
>    nsteps                         = 80000
>    init-step                      = 0
>    simulation-part                = 1
>    comm-mode                      = Linear
>    nstcomm                        = 100
>    bd-fric                        = 0
>    ld-seed                        = 410085841
>    emtol                          = 10
>    emstep                         = 0.01
>    niter                          = 20
>    fcstep                         = 0
>    nstcgsteep                     = 1000
>    nbfgscorr                      = 10
>    rtpi                           = 0.05
>    nstxout                        = 0
>    nstvout                        = 0
>    nstfout                        = 0
>    nstlog                         = 1000
>    nstcalcenergy                  = 100
>    nstenergy                      = 100
>    nstxout-compressed             = 1000
>    compressed-x-precision         = 100
>    cutoff-scheme                  = Verlet
>    nstlist                        = 15
>    pbc                            = xyz
>    periodic-molecules             = false
>    verlet-buffer-tolerance        = 0.005
>    rlist                          = 1.14
>    coulombtype                    = Reaction-Field
>    coulomb-modifier               = Potential-shift
>    rcoulomb-switch                = 0
>    rcoulomb                       = 1.1
>    epsilon-r                      = 15
>    epsilon-rf                     = inf
>    vdw-type                       = Cut-off
>    vdw-modifier                   = Potential-shift
>    rvdw-switch                    = 0
>    rvdw                           = 1.1
>    DispCorr                       = No
>    table-extension                = 1
>    fourierspacing                 = 0.12
>    fourier-nx                     = 0
>    fourier-ny                     = 0
>    fourier-nz                     = 0
>    pme-order                      = 4
>    ewald-rtol                     = 1e-05
>    ewald-rtol-lj                  = 0.001
>    lj-pme-comb-rule               = Geometric
>    ewald-geometry                 = 0
>    epsilon-surface                = 0
>    tcoupl                         = Nose-Hoover
>    nsttcouple                     = 15
>    nh-chain-length                = 1
>    print-nose-hoover-chain-variables = false
>    pcoupl                         = No
>    pcoupltype                     = Isotropic
>    nstpcouple                     = -1
>    tau-p                          = 1
>    compressibility (3x3):
>       compressibility[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       compressibility[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       compressibility[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>    ref-p (3x3):
>       ref-p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       ref-p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       ref-p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>    refcoord-scaling               = No
>    posres-com (3):
>       posres-com[0]= 0.00000e+00
>       posres-com[1]= 0.00000e+00
>       posres-com[2]= 0.00000e+00
>    posres-comB (3):
>       posres-comB[0]= 0.00000e+00
>       posres-comB[1]= 0.00000e+00
>       posres-comB[2]= 0.00000e+00
>    QMMM                           = false
>    QMconstraints                  = 0
>    QMMMscheme                     = 0
>    MMChargeScaleFactor            = 1
> qm-opts:
>    ngQM                           = 0
>    constraint-algorithm           = Lincs
>    continuation                   = false
>    Shake-SOR                      = false
>    shake-tol                      = 0.0001
>    lincs-order                    = 4
>    lincs-iter                     = 1
>    lincs-warnangle                = 30
>    nwall                          = 0
>    wall-type                      = 9-3
>    wall-r-linpot                  = -1
>    wall-atomtype[0]               = -1
>    wall-atomtype[1]               = -1
>    wall-density[0]                = 0
>    wall-density[1]                = 0
>    wall-ewald-zfac                = 3
>    pull                           = false
>    awh                            = false
>    rotation                       = false
>    interactiveMD                  = false
>    disre                          = No
>    disre-weighting                = Conservative
>    disre-mixed                    = false
>    dr-fc                          = 1000
>    dr-tau                         = 0
>    nstdisreout                    = 100
>    orire-fc                       = 0
>    orire-tau                      = 0
>    nstorireout                    = 100
>    free-energy                    = no
>    cos-acceleration               = 0
>    deform (3x3):
>       deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>       deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>    simulated-tempering            = false
>    swapcoords                     = no
>    userint1                       = 0
>    userint2                       = 0
>    userint3                       = 0
>    userint4                       = 0
>    userreal1                      = 0
>    userreal2                      = 0
>    userreal3                      = 0
>    userreal4                      = 0
>    applied-forces:
>      electric-field:
>        x:
>          E0                       = 0
>          omega                    = 0
>          t0                       = 0
>          sigma                    = 0
>        y:
>          E0                       = 0
>          omega                    = 0
>          t0                       = 0
>          sigma                    = 0
>        z:
>          E0                       = 0
>          omega                    = 0
>          t0                       = 0
>          sigma                    = 0
>      density-guided-simulation:
>        active                     = false
>        group                      = protein
>        similarity-measure         = inner-product
>        atom-spreading-weight      = unity
>        force-constant             = 1e+09
>        gaussian-transform-spreading-width = 0.2
>        gaussian-transform-spreading-range-in-multiples-of-width = 4
>        reference-density-filename = reference.mrc
>        nst                        = 1
>        normalize-densities        = true
>        adaptive-force-scaling     = false
>        adaptive-force-scaling-time-constant = 4
> grpopts:
>    nrdf:        3597
>    ref-t:        1100
>    tau-t:         7.5
> annealing:          No
> annealing-npoints:           0
>    acc:	           0           0           0
>    nfreeze:           N           N           N
>    energygrp-flags[  0]: 0
> 
> Changing nstlist from 15 to 25, rlist from 1.14 to 1.288
> 
> Using 1 MPI thread
> Using 1 OpenMP thread 
> 
> System total charge: 0.000
> Reaction-Field:
> epsRF = 0, rc = 1.1, krf = 0.375657, crf = 1.36364, epsfac = 9.26236
> The electrostatics potential has its minimum at r = 1.1
> Potential shift: LJ r^-12: -3.186e-01 r^-6: -5.645e-01
> 
> Using SIMD 4x8 nonbonded short-range kernels
> 
> Using a dual 4x8 pair-list setup updated with dynamic pruning:
>   outer list: updated every 25 steps, buffer 0.188 nm, rlist 1.288 nm
>   inner list: updated every 12 steps, buffer 0.004 nm, rlist 1.104 nm
> At tolerance 0.005 kJ/mol/ps per atom, equivalent classical 1x1 list would be:
>   outer list: updated every 25 steps, buffer 0.309 nm, rlist 1.409 nm
>   inner list: updated every 12 steps, buffer 0.038 nm, rlist 1.138 nm
> 
> Using full Lennard-Jones parameter combination matrix
> 
> Removing pbc first time
> 
> Initializing LINear Constraint Solver
> 
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> B. Hess
> P-LINCS: A Parallel Linear Constraint Solver for molecular simulation
> J. Chem. Theory Comput. 4 (2008) pp. 116-122
> -------- -------- --- Thank You --- -------- --------
> 
> The number of constraints is 1200
> 1200 constraints are involved in constraint triangles,
> will apply an additional matrix expansion of order 4 for couplings
> between constraints inside triangles
> There are: 1600 Atoms
> 
> Constraining the starting coordinates (step 0)
> 
> Constraining the coordinates at t0-dt (step 0)
> Center of mass motion removal mode is Linear
> We have the following groups for center of mass motion removal:
>   0:  rest
> RMS relative constraint deviation after constraining: 7.54e-05
> Initial temperature: 1090.08 K
> 
> Started mdrun on rank 0 Sat Sep  5 22:23:10 2020
> 
>            Step           Time
>               0        0.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.64324e+03    9.05137e+03   -1.53217e+04    0.00000e+00   -2.62704e+03
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.72719e+04    1.46448e+04    1.46448e+04    1.15503e+03    5.86379e+00
>    Constr. rmsd
>     9.28210e-05
> 
>            Step           Time
>            1000       25.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.80784e+03    9.45180e+03   -1.34943e+04    0.00000e+00   -2.34628e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.66919e+04    1.64573e+04    1.65240e+04    1.11625e+03    4.91032e-02
>    Constr. rmsd
>     7.92840e-05
> 
>            Step           Time
>            2000       50.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     4.00155e+03    1.01269e+04   -1.38071e+04    0.00000e+00    3.21352e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.66303e+04    1.69516e+04    1.84123e+04    1.11213e+03   -1.64323e+00
>    Constr. rmsd
>     7.85634e-05
> 
>            Step           Time
>            3000       75.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.71608e+03    9.59209e+03   -1.42468e+04    0.00000e+00   -9.38593e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.62156e+04    1.52770e+04    2.05502e+04    1.08440e+03    6.30861e+00
>    Constr. rmsd
>     6.82540e-05
> 
>            Step           Time
>            4000      100.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.88126e+03    8.69774e+03   -1.35513e+04    0.00000e+00   -9.72317e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.60670e+04    1.50947e+04    2.18651e+04    1.07446e+03   -2.76543e+00
>    Constr. rmsd
>     7.09941e-05
> 
>            Step           Time
>            5000      125.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.81777e+03    9.50289e+03   -1.40430e+04    0.00000e+00   -7.22356e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.64357e+04    1.57133e+04    2.33367e+04    1.09911e+03    3.61202e+00
>    Constr. rmsd
>     6.84536e-05
> 
>            Step           Time
>            6000      150.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.30286e+03    9.09690e+03   -1.42401e+04    0.00000e+00   -1.84039e+03
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.55963e+04    1.37559e+04    2.47662e+04    1.04298e+03    2.29343e+00
>    Constr. rmsd
>     5.93324e-05
> 
>            Step           Time
>            7000      175.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     4.05758e+03    9.57547e+03   -1.36260e+04    0.00000e+00    7.05859e+00
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.70971e+04    1.71042e+04    2.67027e+04    1.14335e+03    2.87823e+00
>    Constr. rmsd
>     7.62672e-05
> 
>            Step           Time
>            8000      200.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.81579e+03    9.49570e+03   -1.35998e+04    0.00000e+00   -2.88294e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.70153e+04    1.67270e+04    2.83461e+04    1.13788e+03    3.68378e+00
>    Constr. rmsd
>     6.68831e-05
> 
>            Step           Time
>            9000      225.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.68385e+03    9.30925e+03   -1.41326e+04    0.00000e+00   -1.13946e+03
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.48368e+04    1.36973e+04    2.93507e+04    9.92190e+02   -4.02677e-01
>    Constr. rmsd
>     6.09615e-05
> 
>            Step           Time
>           10000      250.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.61714e+03    9.23332e+03   -1.33140e+04    0.00000e+00   -4.63544e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.63916e+04    1.59281e+04    3.14303e+04    1.09617e+03   -9.91863e-01
>    Constr. rmsd
>     7.32722e-05
> 
>            Step           Time
>           11000      275.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.84292e+03    9.68248e+03   -1.42625e+04    0.00000e+00   -7.37046e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.68069e+04    1.60698e+04    3.26067e+04    1.12394e+03    1.22513e+00
>    Constr. rmsd
>     7.29358e-05
> 
>            Step           Time
>           12000      300.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.49386e+03    9.77930e+03   -1.35167e+04    0.00000e+00   -2.43536e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.69808e+04    1.67372e+04    3.41957e+04    1.13557e+03    5.08308e-01
>    Constr. rmsd
>     8.42676e-05
> 
>            Step           Time
>           13000      325.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.81249e+03    1.00225e+04   -1.40751e+04    0.00000e+00   -2.40137e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.64656e+04    1.62255e+04    3.50788e+04    1.10111e+03    2.09514e+00
>    Constr. rmsd
>     7.72423e-05
> 
>            Step           Time
>           14000      350.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.90290e+03    9.63802e+03   -1.33045e+04    0.00000e+00    2.36391e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.64963e+04    1.67327e+04    3.70276e+04    1.10317e+03   -1.32518e+00
>    Constr. rmsd
>     6.95933e-05
> 
>            Step           Time
>           15000      375.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.52809e+03    9.54269e+03   -1.39524e+04    0.00000e+00   -8.81652e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.69839e+04    1.61023e+04    3.89582e+04    1.13578e+03    5.31376e+00
>    Constr. rmsd
>     9.65680e-05
> 
>            Step           Time
>           16000      400.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.90438e+03    9.70022e+03   -1.41848e+04    0.00000e+00   -5.80218e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.58456e+04    1.52653e+04    4.02027e+04    1.05965e+03   -4.10030e+00
>    Constr. rmsd
>     7.57252e-05
> 
>            Step           Time
>           17000      425.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.54855e+03    9.51503e+03   -1.35304e+04    0.00000e+00   -4.66862e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.64233e+04    1.59564e+04    4.16487e+04    1.09829e+03    2.81931e-01
>    Constr. rmsd
>     6.42052e-05
> 
>            Step           Time
>           18000      450.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.48966e+03    9.22245e+03   -1.42361e+04    0.00000e+00   -1.52404e+03
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.64753e+04    1.49512e+04    4.29559e+04    1.10176e+03   -1.84941e+00
>    Constr. rmsd
>     7.67903e-05
> 
>            Step           Time
>           19000      475.00000
> 
>    Energies (kJ/mol)
>            Bond          Angle        LJ (SR)   Coulomb (SR)      Potential
>     3.52857e+03    9.64361e+03   -1.35359e+04    0.00000e+00   -3.63673e+02
>     Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
>     1.62009e+04    1.58373e+04    4.41334e+04    1.08342e+03   -2.67067e+00
>    Constr. rmsd
>     7.07023e-05
> 
> Constraint error in algorithm Lincs at step 19537
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 19538
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 19539
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 19540
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 19541
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 19542
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 19543
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 19544
> Wrote pdb files with previous and current coordinates
> Constraint error in algorithm Lincs at step 19545
> Wrote pdb files with previous and current coordinates
> 
> -------------------------------------------------------
> Program:     gmx mdrun, version 2020.3
> Source file: src/gromacs/mdlib/sim_util.cpp (line 465)
> 
> Fatal error:
> Step 19600: The total potential energy is nan, which is not finite. The LJ and
> electrostatic contributions to the energy are 0 and 0, respectively. A
> non-finite potential energy can be caused by overlapping interactions in
> bonded interactions or very large or Nan coordinate values. Usually this is
> caused by a badly- or non-equilibrated initial configuration, incorrect
> interactions or parameters in the topology.
> 
> For more information and tips for troubleshooting, please check the GROMACS
> website at http://www.gromacs.org/Documentation/Errors
> -------------------------------------------------------

There’s no way the simulation will be stable at high temperature with such a large time step.

Hi Dr. Lemkul,

Thanks for responding! I’m using MARTINI coarse graining, so would that be more acceptable?

I would still start by reducing dt. Force fields are generally parametrized to be used at ambient temperatures and most are not validated at high temperature. In general, any high-temperature MD simulation requires a reduced value of dt because bond oscillations become more extreme, which can lead to failure.

2 Likes

Thank you Dr. Lemkul!

kw24, did it work to decrease the dt?
to how much did you decrease?